Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating
Abstract
:1. Introduction
2. Experimental Set Up
2.1. Phase Change Material
2.2. Heat Storage Cycle Experimental Device
2.3. Testing System and Its Heat Performance Test
2.4. Performance Evaluation
2.5. Uncertainty Analysis of the Research Results
3. Results and Discussion
4. Conclusions
- (1)
- The specific heat capacity of MNH90 at 20 °C is 1.6 J/g·K, and it increases slowly with the increase of temperature. When the temperature rises to 120 °C, the specific heat capacity reaches 4.1 J/g·K.
- (2)
- The melting point of the material is 91.8 °C, the latent heat of phase change is 151.3 J/g, and in the cooling stage, the solidification temperature of the material is about 68 °C.
- (3)
- The heat storage density of MNH90 is about 420 MJ/m3, which is about 2.5 times of that of water, assuming the temperature difference is 40 °C.
- (4)
- With thick insulation layer, quick heat charging and heat discharging control method, the heat storage system can get a higher performance. The cycling test shows that the heat storage capacity decreases with the increase of cycle times, and the heat storage performance decreases about 1.8% after 800 operation cycles.
Author Contributions
Funding
Conflicts of Interest
References
- Emiliano, B.; Gabriel, Z.; Luisa, F.C. Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Appl. Therm. Eng. 2021, 189, 116666. [Google Scholar]
- Ouhaibi, S.; Gounni, A.; Belouaggadia, N.; Ezzine, M.; Lbibb, R. Thermal performance of new ecological material integrated into residential building in semi-arid and cold climates. Appl. Therm. Eng. 2020, 181, 115933. [Google Scholar] [CrossRef]
- Chang, C.; Wu, Z.; Navarro, H.; Li, C.; Leng, G.; Li, X.; Yang, M.; Wang, Z.; Ding, Y. Comparative study of the transient natural convection in an underground water pit thermal storage. Appl. Energy 2017, 208, 1162–1173. [Google Scholar] [CrossRef]
- Leng, G.; Qiao, G.; Jiang, Z.; Xu, G.; Qin, Y.; Chang, C.; Ding, Y. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Appl. Energy 2018, 217, 212–220. [Google Scholar]
- Xiong, Y.X.; Wang, Z.Y.; Wu, Y.T.; Xu, P.; Ding, Y.L.; Chang, C.; Ma, C.F. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants. Appl. Energy 2019, 237, 171–179. [Google Scholar] [CrossRef]
- Chang, C.; Sciacovelli, A.; Wu, Z.; Li, X.; Li, Y.; Zhao, M.; Deng, J.; Wang, Z.; Ding, Y. Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid. Appl. Energy 2018, 220, 337–350. [Google Scholar] [CrossRef]
- Xu, Q.; Feng, J.; Liu, L.; Zhou, J.; Ye, G.; Chang, C. Analysis of mechanical-fluid-thermal performance of heat pipeline system with structural deformation effects. Int. J. Heat Mass Transf. 2019, 128, 12–23. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Cong, L.; Jiang, F.; Zhao, Y.Q.; Liu, C.P.; Xiong, Y.X.; Chang, C.; Ding, Y.L. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties. Appl. Energy 2019, 250, 81–91. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, L.; Feng, J.; Qiao, L.; Yu, C.; Shi, W.; Ding, C.; Zang, Y.; Chang, C.; Xiong, Y.; et al. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int. J. Heat Mass Transf. 2020, 149, 119189. [Google Scholar] [CrossRef]
- Zhao, B.C.; Wang, R.Z. Perspectives for short-term thermal energy storage using salt hydrates for building heating. Energy 2019, 189, 116–139. [Google Scholar] [CrossRef]
- Lin, Y.; Alva, G.; Fang, G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 2018, 165, 685–708. [Google Scholar] [CrossRef]
- Ling, Z.; Li, S.; Zhang, Z.; Fang, X.; Gao, X.; Xu, T. A shape-stabilized MgCl2·6H2O–Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability. J. Appl. Electrochem. 2018, 48, 1131–1138. [Google Scholar] [CrossRef]
- Morimoto, T.; Sugiyama, M.; Kumano, H. Experimental study of heat transfer characteristics of phase change material emulsions in a horizontal circular tube. Appl. Therm. Eng. 2021, 188, 116634. [Google Scholar] [CrossRef]
- McKenna, P.; Turner, W.J.N.; Finn, D.P. Thermal energy storage using phase change material: Analysis of partial tank charging and discharging on system performance in a building cooling application. Appl. Therm. Eng. 2021, 198, 198–117437. [Google Scholar] [CrossRef]
- Lane, G.A. Phase change materials for energy storage nucleation to prevent supercooling. Sol. Energy Mater. Sol. Cells 1992, 27, 135–160. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Ci, E.D.; Li, X.Q.; Li, J.Q. An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications. J. Energy Storage 2021, 38, 102536. [Google Scholar] [CrossRef]
- Zhang, M.H.; Chen, X.; Dong, H. A study on multistep thermal decomposition behavior and kinetics of magnesium nitrate hydrate. Thermochim. Acta 2021, 701, 178951. [Google Scholar] [CrossRef]
- Neeraj, G.; Amit, K.; Hrishikesh, D.; Avshish, K.; Abhishek, V.; Prashant, S.; Jain, V.K. Effect of shape and size of carbon materials on the thermophysical properties of magnesium nitrate hexahydrate for solar thermal energy storage applications. J. Energy Storage 2021, 41, 102899. [Google Scholar]
- Honcova, P.; Pilar, R.; Danielik, V.; Soska, P.; Sadovska, G.; Honc, D. Suppressing supercooling in magnesium nitrate hexahydrate and evaluating corrosion of aluminium alloy container for latent heat storage application. J. Therm. Anal. Calorim. 2017, 129, 1573–1581. [Google Scholar] [CrossRef]
- Honcova, P.; Sádovská, G.; Pastvová, J.; Kotál, P.; Seidel, J.; Sazama, P.; Pila, R. Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate. Renew. Energy 2021, 168, 1015–1026. [Google Scholar] [CrossRef]
- Nagano, K.; Ogawa, K.; Mochida, T.; Hayashi, K.; Ogoshi, H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl. Therm. Eng. 2004, 24, 221–232. [Google Scholar] [CrossRef]
- Li, T.X.; Xu, J.X.; Wu, D.L.; He, F.; Wang, R.Z. High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating. Appl. Energy 2019, 248, 406–414. [Google Scholar] [CrossRef]
- Zhao, B.C.; Li, T.X.; He, F.; Gao, J.C.; Wang, R.Z. Demonstration of Mg(NO3)2·6H2O-based composite phase change material for practical-scale medium-low temperature thermal energy storage. Energy 2020, 201, 117711. [Google Scholar] [CrossRef]
- Zhao, B.C.; Li, T.X.; Gao, J.C.; Wang, R.Z. Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research. Renew. Sustain. Energy Rev. 2020, 121, 109712. [Google Scholar] [CrossRef]
- Rohsenow, W.M.; Hartnett, J.P.; Cho, Y.I. Handbook of Heat Transfer; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
Material | Tm (°C) | ΔHm (J/g) | ρ (g/m) | CP [J/(gial)] | λ [W/(mial)] |
---|---|---|---|---|---|
Pure MNH | 89.9 | 162.8 | 1.636 | 1.8 | 0.67 |
MNH90 | 91.8 | 151.3 | 1.886 | 2.2 | 0.77 |
Instruments | Measurement Ranges | Accuracy |
---|---|---|
DSC214 | Room temperature to 750 °C Heating rate: 0.1 °C/min to 50 °C/min Cooling rate: 0.1 °C/min to 2 °C/min (<30 °C) 0.1 °C/min to 10 °C/min (≥30 °C) | ±0.1 °C for temperature sensor ±2% for calorimeter |
Hot Disk TPS2500S | 0.005 W/m·K to 500 W/m·K | ±5% |
K type thermocouple | −40 °C to 375 °C 375 °C to 1000 °C | ±1.5 °C ±0.004|t| |
PT-100 | −100–400 °C | ±(0.15 + 0.002|t|) |
Flowmeter | 1 m3/h to 12 m3/h | ±0.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Zong, J.; Ma, J.; Fang, Y. Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating. Energies 2021, 14, 7108. https://doi.org/10.3390/en14217108
Li Y, Wang C, Zong J, Ma J, Fang Y. Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating. Energies. 2021; 14(21):7108. https://doi.org/10.3390/en14217108
Chicago/Turabian StyleLi, Yang, Caixia Wang, Jun Zong, Jien Ma, and Youtong Fang. 2021. "Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating" Energies 14, no. 21: 7108. https://doi.org/10.3390/en14217108
APA StyleLi, Y., Wang, C., Zong, J., Ma, J., & Fang, Y. (2021). Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating. Energies, 14(21), 7108. https://doi.org/10.3390/en14217108