A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mined Diamonds
2.2. HPHT Diamonds
2.3. M-CVD Diamonds
30.5 days)/30 ct = 214.72 kWh/ct
3. Results and Discussion
3.1. Energy and Water Consumption
3.2. Recycling Water and Hazardous Acids
3.3. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- While Mined Diamond Sales Decline. The Future of Lab Grown Diamonds Is Much More Than Jewelry. Available online: https://www.forbes.com/sites/pamdanziger/2019/12/15/mined-diamond-sales-decline-as-the-future-is-in-laboratory-grown-diamonds/?sh=377a111078d7 (accessed on 15 December 2019).
- Cobb, S.J.; Ayres, Z.J.; Macpherson, J.V. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. Annu. Rev. Anal. Chem. 2018, 11, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Are Laboratory-Grown Diamonds the More Ethical Choice to Say “I do”?|Life and Style|The Guardian. Available online: https://www.theguardian.com/lifeandstyle/2020/mar/10/diamonds-lab-grown-climate-change (accessed on 11 March 2020).
- The Environmental Impact of Mined Diamonds|Clean Origin. Available online: https://www.cleanorigin.com/diamond-environmental-impact/ (accessed on 10 May 2021).
- Mineral Resources Base|Alrosa. Available online: http://eng.alrosa.ru/operations/mineral-resources-base/ (accessed on 27 August 2013).
- Ali, S.H. The ecology of diamond sourcing: From mined to synthetic gems as a sustainable transition. J. Bioecon. 2016, 19, 115–126. [Google Scholar] [CrossRef]
- Just How Eco-Friendly Are Lab-Created Diamonds?—JCK. Available online: https://www.jckonline.com/editorial-article/lab-created-diamonds-eco-friendly/ (accessed on 29 March 2019).
- Yunin, P.A.; Volkov, P.V.; Drozdov, Y.N.; Koliadin, A.V.; Korolev, S.A.; Radischev, D.B.; Surovegina, E.A.; Shashkin, V.I. Study of the Structural and Morphological Properties of HPHT Diamond Substrates. Semiconductors 2018, 52, 1432–1436. [Google Scholar] [CrossRef]
- Schwander, M.; Partes, K. A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 2011, 20, 1287–1301. [Google Scholar] [CrossRef]
- Schwarz, S.; Rottmair, C.; Hirmke, J.; Rosiwal, S.; Singer, R.F. CVD-diamond single-crystal growth. J. Cryst. Growth 2004, 271, 425–434. [Google Scholar] [CrossRef]
- Ghezzi, F.; Cacciamani, G.; Caniello, R.; Toncu, D.C.; Causa, F.; Dellasega, D.; Russo, V.; Passoni, M. Carbon Structures Grown by Direct Current Microplasma: Diamonds, Single-Wall Nanotubes, and Graphene. J. Phys. Chem. C 2014, 118, 24714–24722. [Google Scholar] [CrossRef]
- Zalieckas, J.; Pobedinskas, P.; Greve, M.M.; Eikehaug, K.; Haenen, K.; Holst, B. Large area microwave plasma CVD of diamond using composite right/left-handed materials. Diam. Relat. Mater. 2021, 116, 108394. [Google Scholar] [CrossRef]
- Truscott, B.S.; Kelly, M.W.; Potter, K.J.; Ashfold, M.N.R.; Mankelevich, Y.A. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH4/N2/H2 Plasmas. J. Phys. Chem. A 2016, 120, 8537–8549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glyavin, M.; Sabchevski, S.; Idehara, T.; Mitsudo, S. Gyrotron-Based Technological Systems for Material Processing—Current Status and Prospects. J. Infrared Millim. Terahertz Waves 2020, 41, 1022–1037. [Google Scholar] [CrossRef]
- Dolmatov, V.Y.; Myllymäki, V.; Vehanen, A. A possible mechanism of nanodiamond formation during detonation synthesis. J. Superhard Mater. 2013, 35, 143–150. [Google Scholar] [CrossRef]
- Galimov, E.M. Possibility of Natural Diamond Synthesis under Conditions of Cavitation, occurring in a Fast-moving Magmatic Melt. Nature 1973, 243, 389–391. [Google Scholar] [CrossRef]
- Annual Reports|Alrosa. Available online: http://eng.alrosa.ru/documents/annual-reports/#2018 (accessed on 1 July 2019).
- Annual Reports|Alrosa. Available online: http://eng.alrosa.ru/documents/annual-reports/#2016 (accessed on 1 July 2017).
- Annual Reports|Alrosa. Available online: http://eng.alrosa.ru/documents/annual-reports/#2021 (accessed on 17 June 2021).
- Building Forever Reports—De Beers Group. Available online: https://www.debeersgroup.com/sustainability-and-ethics/building-forever-reports (accessed on 25 June 2021).
- Production Reports—De Beers Group. Available online: https://www.debeersgroup.com/reports/production-reports (accessed on 25 June 2021).
- The Global Diamond Industry 2018: A Resilient Industry Shines through|Bain & Company. Available online: https://www.bain.com/insights/global-diamond-industry-report-2018/# (accessed on 5 December 2018).
- Linde, O.; Epstein, A.; Kravchenko, S.; Rentmeesters, K. Brilliant Under Pressure: The Global Diamond Industry 2020–21. 8 February 2021. Available online: https://www.bain.com/insights/global-diamond-industry-2020-21/ (accessed on 8 August 2021).
- Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorfjun, R.H. Man-Made Diamonds. Nature 1955, 176, 51–55. [Google Scholar] [CrossRef]
- Eaton-Magaña, S.; Shigley, J.E.; Breeding, C.M. Observations on hpht-grown synthetic diamonds: A review. Gems Gemol. 2017, 53, 262–284. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Bogdashov, A.; Denisov, G.; Kalynova, G. Oversized transmission lines for gyrotron-based technological ovens and plasma-chemical reactors. In Quasi-Optical Control of Intense Microwave Transmission; Springer: Dordrecht, The Netherlands, 2005; pp. 15–23. [Google Scholar] [CrossRef]
- Vikharev, A.L.; Gorbachev, A.M.; Lobaev, M.A.; Radishev, D.B. Multimode cavity type MPACVD reactor for large area diamond film deposition. Diam. Relat. Mater. 2018, 83, 8–14. [Google Scholar] [CrossRef]
- Baranauskas, V.; Peterlevitz, A.C.; Ceragioli, H.J.; Durrant, S.F. Micro-crystalline diamond and nano-carbon structures produced using a high argon concentration in hot-filament chemical vapor deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 1057. [Google Scholar] [CrossRef]
- Gorbachev, A.M.; Koldanov, V.A.; Vikharev, A.L. Numerical modeling of a microwave plasma CVD reactor. Diam. Relat. Mater. 2001, 10, 342–346. [Google Scholar] [CrossRef]
- Mallik, A.K. Microwave Plasma CVD Grown Single Crystal Diamonds-A Review. J. Coat. Sci. Technol. Receiv. 2016, 3. [Google Scholar] [CrossRef]
- Roy, M. Protective Hard Coatings for Tribological Applications. In Materials Under Extreme Conditions; Elsevier: Amsterdam, The Netherlands, 2017; pp. 259–292. [Google Scholar] [CrossRef]
- Lab-Grown Diamonds: Sustainable Choice for Consumers?—Global Extraction Networks. Available online: http://globalextractionnetworks.com/lab-grown-diamonds-a-sustainable-choice-for-consumers/ (accessed on 24 September 2021).
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Actual/Average | |
---|---|---|---|---|---|---|---|---|
Fresh water intake (m3/ct) | 0.676 | 0.642 | 0.543 | 0.199 | 0.077 | 0.115 | 0.125 | 0.340 |
Energy resources consumption, (kWh/ct) | 92.78 | 89.72 | 95.83 | 90.83 | 97.78 | 98.61 | 108.69 | 96.32 |
2015 | 2016 | 2017 | 2018 | Avg. | |
---|---|---|---|---|---|
Direct and indirect energy use (MWh) | 4.78 | 4.53 | 4.31 | 4.92 | 4.64 |
Energy from electricity purchased | 24% | 23% | 28% | 32% | 27% |
Energy from fossil fuels | 76% | 77% | 72% | 68% | 73% |
Diamond production (M ct) | 28.8 | 27.4 | 33.4 | 35.3 | 31.2 |
Energy usage (kWh/ct) | 166 | 165 | 129 | 139 | 150 |
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|
Global (M ct) | 127 | 126 | 151 | 147 | 139 | 111 |
ALROSA (M ct) | 38.3 | 37.4 | 39.6 | 36.7 | 37.4 | 35.5 |
DeBeers (M ct) | 28.8 | 27.4 | 33.4 | 35.3 | 31.3 | 27.2 |
Origin of Diamonds | Energy Consumption (kWh/ct) | Water Intake (m3/ct) |
---|---|---|
Mined | 96 (ALROSA, public reports–2018) | 0.077 (ALROSA, 2018) |
150 (DeBeers, public reports–2018 | Not analyzed | |
HPHT (“850-press”) | 36 | ~0 |
(open water circuit, (near-) colorless, ~40 ct over, 12-day cycle) | ||
HPHT (Apollo Diamonds) | 28 | ~0 |
215 | ||
M-CVD (our) | (2.45 GHz, closed water-cooling, (near-) colorless, | 0.002 |
capacity 30 ct/month | ||
M-CVD (IIa Tech) | 77 | |
M-CVD (Ekati Mine) | 143 | Not analyzed |
Method | Capital Expenditure | Energy Demand | Water Demand |
---|---|---|---|
Mining | Very high | Medium (per carat) | High |
It is very costly to build a new concentrating factory with supporting infrastructure. | About ¾-fossil fuels, ¼-purchased electricity (according to DeBeers reports) | Fresh water sources, industrial system of water-recycling. | |
HPHT | Medium | Low (per carat) | Negligible |
Heavy-duty equipment, (68-ton hydraulic press) | A peak load requires more than 30 kW per press at the beginning of a cycle, and about 5 kWh to support growing. | Open-circuit water cooling system for an array of presses (China, best-practice) | |
M-CVD | Low | High (per carat) | Very low |
High-tech magnetron-based equipment, Expertise is a major contributor to the price. | Electricity 8.8 kWh–magnetron (2.45-GHz), chiller, hydrogen station. In addition, methane, as a source of carbon, has an insignificant contribution. | Water as a source of hydrogen and as a cooling refrigerant. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhdanov, V.; Sokolova, M.; Smirnov, P.; Andrzejewski, L.; Bondareva, J.; Evlashin, S. A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds. Energies 2021, 14, 7062. https://doi.org/10.3390/en14217062
Zhdanov V, Sokolova M, Smirnov P, Andrzejewski L, Bondareva J, Evlashin S. A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds. Energies. 2021; 14(21):7062. https://doi.org/10.3390/en14217062
Chicago/Turabian StyleZhdanov, Vladislav, Marina Sokolova, Pavel Smirnov, Lukasz Andrzejewski, Julia Bondareva, and Stanislav Evlashin. 2021. "A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds" Energies 14, no. 21: 7062. https://doi.org/10.3390/en14217062
APA StyleZhdanov, V., Sokolova, M., Smirnov, P., Andrzejewski, L., Bondareva, J., & Evlashin, S. (2021). A Comparative Analysis of Energy and Water Consumption of Mined versus Synthetic Diamonds. Energies, 14(21), 7062. https://doi.org/10.3390/en14217062