# A Novel MPPT Technique Based on Mutual Coordination between Two PV Modules/Arrays

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Distributed PV Systems and MPPT Techniques

#### 2.1. Assumptions

#### 2.2. MPPT Techniques

## 3. Basic Philosophy of Proposed Technique

#### Selection of Threshold Limit Values

## 4. Working of Proposed Technique

#### 4.1. Stage 1 (Non-Mismatch Conditions)

#### 4.1.1. Scenario 1: Uniform Irradiance Condition

#### 4.1.2. Scenario 2: Varying Weather Condition

#### 4.2. Stage 2 (Mismatch Conditions)

## 5. Concept Validation

#### Simulation Setup

## 6. Results and Discussion

#### 6.1. Case 1: Step Increment in Weather Conditions

#### 6.2. Case 2: Ramp Increment in Weather Conditions

#### 6.3. Case 3

#### 6.4. Case 4

#### 6.5. Case 5

#### 6.6. Summary

#### 6.7. Partial Shading

#### 6.7.1. Case 1

#### 6.7.2. Case 2

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

$\Delta P$ | Power difference between two PV modules/arrays |

$\Delta V$ | Voltage step |

A1 | First PV Array |

A2 | Second PV Array |

${C}_{in}$ | Input capacitor |

${C}_{out}$ | Output capacitor |

CPV | Centralized Photovoltaic |

D | Duty cycle |

D-IC | Dual array based Incremental conductance MPPT |

DPV | Distributed Photovoltaic |

${I}_{m}$ | Current of PV module at MPP |

${I}_{sc}$ | Short circuit current of PV module |

I-V | Current vs voltage characteristic curve |

L | Inductor in dc-dc converter |

MPPT | Maximum Power Point |

$P\&O$ | Perturb and Observe |

PF | Power of the follower array |

PS | Stored power |

PL | Power of the leader array |

P-V | Power vs voltage characteristic curve |

PV | Photovoltaic |

STC | Standard testing conditions |

TH | Threshold value |

THL | Threshold limit |

${V}_{m}$ | Voltage of PV module at MPP |

${V}_{oc}$ | Open circuit voltage of PV module |

## References

- Adeel, M.; Hassan, A.K.; Sher, H.A.; Murtaza, A.F. A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device. Renew. Sustain. Energy Rev.
**2021**, 142, 110826. [Google Scholar] [CrossRef] - Ahmad, R.; Murtaza, A.F.; Sher, H.A.; Shami, U.T.; Olalekan, S. An analytical approach to study partial shading effects on PV array supported by literature. Renew. Sustain. Energy Rev.
**2017**, 74, 721–732. [Google Scholar] [CrossRef] - Adinolfi, G.; Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Design of dc/dc Converters for DMPPT PV Applications Based on the Concept of Energetic Efficiency. J. Sol. Energy Eng.
**2010**, 132, 021005. [Google Scholar] [CrossRef] - Chao, R.M.; Ko, S.H.; Lin, H.K.; Wang, I.K. Evaluation of a distributed photovoltaic system in grid-connected and standalone applications by different MPPT algorithms. Energies
**2018**, 11, 1484. [Google Scholar] [CrossRef][Green Version] - Ahmad, R.; Murtaza, A.F.; Sher, H.A. Power tracking techniques for efficient operation of photovoltaic array in solar applications—A review. Renew. Sustain. Energy Rev.
**2019**, 101, 82–102. [Google Scholar] [CrossRef] - Park, J.H.; Ahn, J.Y.; Cho, B.H.; Yu, G.J. Dual-module-based maximum power point tracking control of photovoltaic systems. IEEE Trans. Ind. Electron.
**2006**, 53, 1036–1047. [Google Scholar] [CrossRef] - Femia, N.; Lisi, G.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Distributed maximum power point tracking of photovoltaic arrays: Novel approach and system analysis. IEEE Trans. Ind. Electron.
**2008**, 55, 2610–2621. [Google Scholar] [CrossRef][Green Version] - Delavaripour, H.; Dehkordi, B.M.; Zarchi, H.A.; Adib, E. Increasing energy capture from partially shaded PV string using differential power processing. IEEE Trans. Ind. Electron.
**2018**, 66, 7672–7682. [Google Scholar] [CrossRef] - Petrone, G.; Spagnuolo, G.; Vitelli, M. An analog technique for distributed MPPT PV applications. IEEE Trans. Ind. Electron.
**2011**, 59, 4713–4722. [Google Scholar] [CrossRef] - Murtaza, A.F.; Sher, H.A.; Chiaberge, M.; Boero, D.; De Giuseppe, M.; Addoweesh, K.E. Comparative analysis of maximum power point tracking techniques for PV applications. In Proceedings of the INMIC, Lahore, Pakistan, 19–20 December 2013; pp. 83–88. [Google Scholar]
- Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G.; Vitelli, M. Granular control of photovoltaic arrays by means of a multi-output Maximum Power Point Tracking algorithm. Prog. Photovolt. Res. Appl.
**2013**, 21, 918–932. [Google Scholar] [CrossRef] - Miyatake, M.; Veerachary, M.; Toriumi, F.; Fujii, N.; Ko, H. Maximum power point tracking of multiple photovoltaic arrays: A PSO approach. IEEE Trans. Aerosp. Electron. Syst.
**2011**, 47, 367–380. [Google Scholar] [CrossRef] - Renaudineau, H.; Donatantonio, F.; Fontchastagner, J.; Petrone, G.; Spagnuolo, G.; Martin, J.P.; Pierfederici, S. A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans. Ind. Electron.
**2014**, 62, 1047–1058. [Google Scholar] [CrossRef] - Sher, H.A.; Murtaza, A.F.; Noman, A.; Addoweesh, K.E.; Al-Haddad, K.; Chiaberge, M. A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans. Sustain. Energy
**2015**, 6, 1426–1434. [Google Scholar] - López-Erauskin, R.; González, A.; Petrone, G.; Spagnuolo, G.; Gyselinck, J. Multi-Variable Perturb and Observe Algorithm for Grid-Tied PV Systems With Joint Central and Distributed MPPT Configuration. IEEE Trans. Sustain. Energy
**2020**, 12, 360–367. [Google Scholar] [CrossRef] - Sher, H.A.; Murtaza, A.F.; Addoweesh, K.E.; Chiaberge, M. A two stage hybrid maximum power point tracking technique for photovoltaic applications. In Proceedings of the 2014 IEEE PES General Meeting | Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Petrone, G.; Spagnuolo, G.; Teodorescu, R.; Veerachary, M.; Vitelli, M. Reliability issues in photovoltaic power processing systems. IEEE Trans. Ind. Electron.
**2008**, 55, 2569–2580. [Google Scholar] [CrossRef] - Kollimalla, S.K.; Mishra, M.K. Variable perturbation size adaptive P&O MPPT algorithm for sudden changes in irradiance. IEEE Trans. Sustain. Energy
**2014**, 5, 718–728. [Google Scholar] - Jiang, Y.; Qahouq, J.A.A.; Haskew, T.A. Adaptive step size with adaptive-perturbation-frequency digital MPPT controller for a single-sensor photovoltaic solar system. IEEE Trans. Power Electron.
**2012**, 28, 3195–3205. [Google Scholar] [CrossRef] - Killi, M.; Samanta, S. Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans. Ind. Electron.
**2015**, 62, 5549–5559. [Google Scholar] [CrossRef] - Ahmed, J.; Salam, Z. A modified P&O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency. IEEE Trans. Sustain. Energy
**2016**, 7, 1506–1515. [Google Scholar] - Behera, T.K.; Behera, M.K.; Nayak, N. Spider monkey based improve P&O MPPT controller for photovoltaic generation system. In Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, India, 28–30 March 2018; pp. 1–6. [Google Scholar]
- Murtaza, A.F.; Sher, H.A.; Chiaberge, M.; Boero, D.; De Giuseppe, M.; Addoweesh, K.E. A novel hybrid MPPT technique for solar PV applications using perturb & observe and fractional open circuit voltage techniques. In Proceedings of the 15th International Conference MECHATRONIKA, Prague, Czech Republic, 5–7 December 2012; pp. 1–8. [Google Scholar]
- Sher, H.A.; Rizvi, A.A.; Addoweesh, K.E.; Al-Haddad, K. A single-stage stand-alone photovoltaic energy system with high tracking efficiency. IEEE Trans. Sustain. Energy
**2016**, 8, 755–762. [Google Scholar] [CrossRef] - Sher, H.A.; Addoweesh, K.E.; Al-Haddad, K. An efficient and cost-effective hybrid MPPT method for a photovoltaic flyback microinverter. IEEE Trans. Sustain. Energy
**2017**, 9, 1137–1144. [Google Scholar] [CrossRef] - Han, C.; Lee, H. Investigation and modeling of long-term mismatch loss of photovoltaic array. Renew. Energy
**2018**, 121, 521–527. [Google Scholar] [CrossRef] - Grandi, G.; Ostojic, D. Dual-inverter-based MPPT algorithm for grid-connected photovoltaic systems. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 393–398. [Google Scholar]
- Grandi, G.; Rossi, C.; Fantini, G. Modular photovoltaic generation systems based on a dual-panel MPPT algorithm. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 2432–2436. [Google Scholar]
- Chamberlin, C.E.; Lehman, P.; Zoellick, J.; Pauletto, G. Effects of mismatch losses in photovoltaic arrays. Sol. Energy
**1995**, 54, 165–171. [Google Scholar] [CrossRef] - Spertino, F.; Akilimali, J.S. Are Manufacturing I–V Mismatch and Reverse Currents Key Factors in Large Photovoltaic Arrays? IEEE Trans. Ind. Electron.
**2009**, 56, 4520–4531. [Google Scholar] [CrossRef][Green Version] - Villalva, M.G.; Gazoli, J.R.; Ruppert Filho, E. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron.
**2009**, 24, 1198–1208. [Google Scholar] [CrossRef]

**Figure 7.**Scenario 2: Graphical analysis of the proposed technique under varying weather conditions.

No of Modules Per Array | Threshold Value Range |
---|---|

Greater than 12 | 0.3 to 0.7% |

Greater than 1 and less than 12 | 0.8% to 1.3% |

1 | 1.4% to 1.7% |

Parameters | Value |
---|---|

${I}_{sc}\left(A\right)$ | 8.21 |

${V}_{oc}\left(V\right)$ | 32.9 |

${I}_{m}\left(A\right)$ | 7.61 |

${V}_{m}\left(V\right)$ | 26.3 |

${P}_{m}\left(W\right)$ | 200 |

${K}_{v}(V/K)$ | −0.123 |

${K}_{i}(A/K)$ | 0.0032 |

${N}_{s}$ | 54 |

Case | Type | Measurement Period | Efficiency (%) proposed MPPT | Efficiency (%) D-IC | Efficiency (%) Conv. $\mathit{P}\&\mathit{O}$ |
---|---|---|---|---|---|

1 | Step rise | 70−350 ms | 98.21 | 97.98 | 90.91 |

2 | Ramp rise | 70−350 ms | 98.59 | 98.37 | 90.81 |

3 | Step decay | 70−480 ms | 99.66 | 99.6 | 84.46 |

4 | Ramp decay | 70−480 ms | 99.78 | 99.74 | 84.97 |

5 | Cloud pass | 70−320 ms | 91.31 | 91.06 | 89.95 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Murtaza, A.F.; Sher, H.A.; Spertino, F.; Ciocia, A.; Noman, A.M.; Al-Shamma’a, A.A.; Alkuhayli, A.
A Novel MPPT Technique Based on Mutual Coordination between Two PV Modules/Arrays. *Energies* **2021**, *14*, 6996.
https://doi.org/10.3390/en14216996

**AMA Style**

Murtaza AF, Sher HA, Spertino F, Ciocia A, Noman AM, Al-Shamma’a AA, Alkuhayli A.
A Novel MPPT Technique Based on Mutual Coordination between Two PV Modules/Arrays. *Energies*. 2021; 14(21):6996.
https://doi.org/10.3390/en14216996

**Chicago/Turabian Style**

Murtaza, Ali Faisal, Hadeed Ahmed Sher, Filippo Spertino, Alessandro Ciocia, Abdullah M. Noman, Abdullrahman A. Al-Shamma’a, and Abdulaziz Alkuhayli.
2021. "A Novel MPPT Technique Based on Mutual Coordination between Two PV Modules/Arrays" *Energies* 14, no. 21: 6996.
https://doi.org/10.3390/en14216996