Green Growth in the OECD Countries: A Multivariate Analytical Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- x1 CO2 productivity, GDP per unit of energy-related CO2 emissions;
- x2 Energy productivity, GDP per unit of total primary energy supply (TPES);
- x3 Material productivity, GDP per unit of domestic material consumption (DMC);
- x4 Municipal waste recycled or composted, % of waste treated;
- x5 Renewable energy supply, % of TPES;
- x6 Population with access to improved drinking water sources in %;
- x7 Population with access to improved sanitation, % of total population;
- x8 Life expectancy at birth;
- x9 Real GDP per capita;
- x10 Real GDP, index 2000 = 100;
- x11 Energy intensity, TPES per capita;
- x12 Municipal waste generated, kg per capita;
- x13 Mean population exposure to PM2.5;
- x14 Mortality from exposure to ambient PM2.5;
- x15 Welfare cost of premature death from exposure to ambient PM2.5.
3.1. Status and Development of Indicators
3.2. Cluster Analysis
3.2.1. Cluster Analysis of the OECD Countries in Period 1
3.2.2. Cluster Analysis of the OECD Countries in Period 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IMF. World Economic Outlook—April 2009: Crisis and Recovery. Available online: https://www.imf.org/en/Publications/WEO/Issues/2016/12/31/Crisis-and-Recovery (accessed on 15 July 2021).
- OECD. Towards Green Growth? Tracking Progress; OECD Publishing, OECD Green Growth Studies: Paris, France, 2015. [Google Scholar]
- OECD. Towards Green Growth; OECD Publishing, OECD Green Growth Studies: Paris, France, 2011. [Google Scholar]
- Capasso, M.; Hansen, T.; Heiberg, J.; Klitkou, A.; Steen, M. Green growth—A synthesis of scientific findings. Technol. Forecast. Soc. Chang. 2019, 146, 390–402. [Google Scholar] [CrossRef]
- Kasztelan, A. Green growth, green economy and sustainable development: Terminological and relational discourse. Prague Econ. Pap. 2017, 26, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Gough, I. Can growth be green? Int. J. Health Serv. 2015, 45, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.I.; Veiga, P.M.; Ferreira, J.J.M.; Hughes, M. Green growth versus economic growth: Do sustainable technology transfer and innovations lead to an imperfect choice? Bus. Strategy Environ. 2021, 30, 2021–2037. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G. Is green growth possible? New Political Econ. 2019, 25, 469–486. [Google Scholar] [CrossRef]
- Dercon, S. Is green growth good for the poor? World Bank Res. Obs. 2014, 29, 163–185. [Google Scholar] [CrossRef]
- Ossewaarde, M.; Ossewaarde-Lowtoo, R. The EU’s Green deal: A third Alternative to Green Growth and Degrowth? Sustainability 2020, 12, 9825. [Google Scholar] [CrossRef]
- European Commission. Delivering the European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 15 July 2021).
- European Commission. A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 17 July 2021).
- OECD. Green Growth Indicators 2017; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Fanta, M. Water management in the Czech Republic: Transformation, restructuralization, and comparison of the current state of the branch with the state in 1993. Littera Scr. 2019, 12, 1–12. [Google Scholar]
- Kabourková, K.; Stuchlý, J. Structural development of utilised agricultural area in EU countries subsidy policy of the Czech Republic. Literra Scr. 2019, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kmecová, I.; Tlustý, M.; Velková, V. The analysis of legal environment and administrative burden od SMEs as an obstacle to business. Literra Scr. 2020, 13, 135–152. [Google Scholar]
- Vochozka, M.; Maroušková, A.; Šuleř, P. Economic, environmental and moral acceptance of renewable energy: A case study-the agricultural biogas plant at Pěčín. In Science and Engineering Ethics; Springer: Dordrecht, The Netherlands, 2017; Volume 24, pp. 299–305. [Google Scholar]
- Maroušek, J.; Rowland, Z.; Valášková, K.; Král, P. Techno-economic assessment of potato waste management in developing economies. In Clean Technologies and Environmental Policy; Springer: New York, NJ, USA, 2020; Volume 22, pp. 937–944. ISSN 1618-954X. [Google Scholar] [CrossRef]
- Škapa, S.; Vochozka, M. Towards Higher Moral and Economic Goals in Renewable Energy. In Science and Engineering Ethics; Springer: Dordrecht, The Netherlands, 2019; p. 10. [Google Scholar] [CrossRef]
- Machová, V.; Vrbka, J. Value generators for businesses in agriculture. In Proceedings of the 12th International Days of Statistics and Economics Conference, Prague, Czech Republic, 6–8 September 2018; Tomáš, L., Tomáš, P., Eds.; Libuše Macáková, Melandrium: Prague, Czech Republic, 2018; pp. 1123–1132, ISBN 978-80-87990-14-8. [Google Scholar]
- Kasych, A.; Horák, J.; Glukhova, V.; Bondarenko, S. The impact of intellectual capital on innovation activity of companies. In Quality-Access to Success; SRAC-Societatea Romana Pentru Asigurarea Calitatii: Bucharest, Romania, 2021; Volume 22, pp. 3–11. [Google Scholar]
- Rousek, P. Environmental Footprint Evaluation of Eco-Friendly Products in the Global Economy. In SHS Web of Conferences: Innovative Economic Symposium 2018—Milestones and Trends of World Economy (IES2018); Horák, J., Ed.; EDP Sciences: Les Ulis, France, 2018; p. 4. [Google Scholar] [CrossRef]
- Rousek, P.; Hašková, S. Changes in the Concept of Public Greenery on the Basis of an Analysis of Czech Municipal Financing. In SHS Web of Conferences-Innovative Economic Symposium 2017: Strategic Partnership in International Trade, 1st ed.; Váchal, J., Vochozka, M., Horák, J., Eds.; EDP Sciences: Les Ulis, France, 2017; p. 10. ISBN 978-2-7598-9028-6. [Google Scholar]
- Kasych, A.; Šuleř, P.; Rowland, Z. Corporate environmental responsibility through the prism of strategic management. Sustainability 2020, 12, 9589. [Google Scholar] [CrossRef]
- Pimonenko, T.; Bilan, Y.; Horák, J.; Starchenko, L.; Gajda, V. Green brand of companies and greenwashing under sustainable development goals. Sustainability 2020, 12, 1679. [Google Scholar] [CrossRef] [Green Version]
- Stehel, V.; Horák, J.; Vochozka, M. Prediction of institutional sector development and analysis of enterprises active in agriculture. E+M Ekon. A Manag. 2019, 22, 103–118. [Google Scholar] [CrossRef]
- Dogaru, L. Green Economy and Green Growth—Opportunities for Sustainable Development. Proceedings 2020, 63, 70. [Google Scholar] [CrossRef]
- Nadányiová, M.; Gajanová, L. Consumers’ perception of green marketing as a source of competitive advantage in the hotel industry. Littera Scr. 2018, 11, 102–115. [Google Scholar]
- Minárik, P. Institutional environment and agricultural production in post-communist Central European countries. Littera Scr. 2017, 10, 88–101. [Google Scholar]
- Škare, M.; Tomić, D.; Stjepanović, S. Green business cycle: An analysis on China and France. Acta Montan. Slovaca 2020, 25, 563–576. [Google Scholar] [CrossRef]
- Vochozka, M.; Horák, J.; Krulický, T.; Pardal, P. Predicting future Brent oil price on global markets. Acta Montan. Slovaca 2020, 25, 375–392. [Google Scholar] [CrossRef]
- Kacerauskas, T. Creative Economy and the Idea of the Creative Society. Transform. Bus. Econ. 2020, 1, 43–52. [Google Scholar]
- Du, J.; Peng, S.; Song, W.; Peng, J. Relationship between Enterprise Technological Diversification and Technology Innovation Performance: Moderating Role of Internal Resources and External Environment Dynamics. Transform. Bus. Econ. 2020, 19, 52–73. [Google Scholar]
- Mazzoni, F. Circular economy and eco-innovation in Italian industrial clusters. Best practices from Prato textile cluster. Insights Reg. Dev. 2020, 2, 661–676. [Google Scholar] [CrossRef]
- Vochozka, M.; Kalinová, E.; Gao, P.; Smolíková, L. Development of copper price from July 1959 and predicted development till the end of year 2022. Acta Montan. Slovaca 2021, 26, 262–280. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Balcerzak, A.B. Selection of the set of areal units for economic regional research on the land use: A proposal for Aggregation Problem solution. Acta Montan. Slovaca 2021, 26, 222–223. [Google Scholar]
- Plėta, T.; Tvaronavičienė, M.; Della Casa, S.; Agafonov, K. Cyber-attacks to critical energy infrastructure and management issues: Overview of selected cases. Insights Reg. Dev. 2020, 2, 703–715. [Google Scholar] [CrossRef]
- Korshenkov, E.; Ignatyev, S. Empirical interpretation and measurement of the productivity and efficiency of regions: The case of Latvia. Insights Reg. Dev. 2020, 2, 549–561. [Google Scholar] [CrossRef]
- Kelić, I.; Erceg, A.; Čandrlić Dankoš, I. Increasing tourism competitiveness: Connecting Blue and Green Croatia. J. Tour. Serv. 2020, 20, 132–149. [Google Scholar] [CrossRef]
- Lee, C.M.; Chou, H.H. Green growth in Taiwan—An application of The OECD green Growth Monitoring Indicators. Singap. Econ. Rev. 2018, 63, 249–274. [Google Scholar] [CrossRef]
- Sneideriene, A.; Viederyte, R.; Abele, L. Green growth assessment discourse on Evaluation indices in the European Union. Entrep. Sustain. Issues 2020, 8, 360–369. [Google Scholar] [CrossRef]
- Van der Ploeg, R.; Withagen, C. Green growth, green paradox and the global economic crisis. Environ. Innov. Soc. Transit. 2013, 6, 116–119. [Google Scholar] [CrossRef]
- Khouri, S.; Behun, M.; Knapcikova, L.; Behunova, A.; Sofranko, M.; Rosova, A. Characterization of Customized Encapsulant Polyvinyl Butyral used in the solar industry and its impact on the environment. Energies 2020, 13, 5391. [Google Scholar] [CrossRef]
- Tawiah, V.; Zakari, A.; Adedoyin, F.F. Determinants of green growth in developed and developing countries. Environ. Sci. Pollut. Res. 2021, 28, 39227–39242. [Google Scholar] [CrossRef] [PubMed]
- Dovgal, O.; Goncharenko, N.; Reshetnyak, O.; Dovgal, G.; Danko, N. Priorities for Greening and the sustainable development of OECD member countries and Ukraine: A comparative analysis. Comp. Econ. Res.-Cent. East. Eur. 2021, 24, 45–63. [Google Scholar] [CrossRef]
- OECD. OECD Stat. Available online: https://stats.oecd.org/ (accessed on 1 July 2021).
- OECD. Measuring Distance to the SDG Targets 2019: An Assessment of Where OECD Countries Stand; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- The Sustainable Development Agenda—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 10 July 2021).
- Schmalensee, R. From “green growth” to sound policies: An overview. Energy Econ. 2012, 34, S2–S6. [Google Scholar] [CrossRef] [Green Version]
- Loveday, R. Statistics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Witte, R.S.; Witte, J.S. Statistics; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Simionescu, M. Testing Sigma Convergence across EU-28. Econ. Sociol. 2014, 7, 48–60. [Google Scholar] [CrossRef]
- Das, R.C. Handbook of Research on Global Indicators of Economic and Political Convergence; Business Science Reference: Hershey, PA, USA, 2016. [Google Scholar]
- Janssen, F.; Hende, A.V.D.; Beer, J.; Wissen, L.J.G. Sigma and beta convergence in regional mortality: A case study of the Netherlands. Demogr. Res. 2016, 35, 81–116. [Google Scholar] [CrossRef] [Green Version]
- Fialová, K.; Želinský, T. Regional patterns of social differentiation in Visegrád countries. Czech Sociol. Rev. 2019, 55, 735–789. [Google Scholar] [CrossRef]
- Yim, O.; Ramdeen, K.T. Hierarchical cluster Analysis: Comparison of Three LINKAGE measures and application to psychological data. Quant. Methods Psychol. 2015, 11, 8–21. [Google Scholar] [CrossRef]
- Šoltés, E.; Vojtková, M.; Šoltésová, T. Changes in the geographical distribution of youth poverty and social exclusion in EU member countries between 2008 and 2017. Morav. Geogr. Rep. 2020, 28, 2–15. [Google Scholar] [CrossRef]
- Szymańska, A. Reducing Socioeconomic Inequalities in the European Union in the Context of the 2030 Agenda for Sustainable Development. Sustainability 2021, 13, 7409. [Google Scholar] [CrossRef]
- Milligan, G.W. Cluster Analysis; College of Business, Ohio State University: Columbus, OH, USA, 1995. [Google Scholar]
- Uprichard, E.; Byrne, D.S. Cluster Analysis. In Logic and Classics; SAGE: London, UK, 2012. [Google Scholar]
- Everitt, B.S.; Landau, S.; Morven, L.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Derlukiewicz, N.; Mempel-Śnieżyk, A.; Mankowska, D.; Dyjakon, A.; Minta, S.; Pilawka, T. How do Clusters Foster Sustainable Development? An Analysis of EU Policies. Sustainability 2020, 12, 1297. [Google Scholar] [CrossRef] [Green Version]
- Dillon, W.R.; Goldstein, M. Multivariate Analysis: Methods and Applications; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Dunteman, G.H. Principal Component Analysis; Sage: Newbury Park, CA, USA, 1989. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2010. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374. [Google Scholar] [CrossRef]
- O’Rourke, N.; Hatcher, L. A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Santos, R.D.O.; Gorgulho, B.M.; Castro, M.A.D.; Fisberg, R.M.; Marchioni, D.M.; Baltar, V.T. Principal component analysis and factor analysis: Differences and similarities in nutritional epidemiology application. Rev. Bras. Epidemiol. 2019, 22, e190041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojanowska, M.; Nęcka, K. Selection of the Multiple-Criiater Decision-Making Method for Evaluation of Sustainable Energy Development: A Case Study of Poland. Energies 2020, 13, 6321. [Google Scholar] [CrossRef]
- Kryk, B.; Guzowska, M.K. Implementation of Climate/Energy Targets of the Europe 2020 Strategy by the EU Member States. Energies 2021, 14, 2711. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Bindzár, P. Assessing the Level of Energy and Climate Sustainability in the European Union Countries in the Context of the European Green Deal Strategy and Agenda 2030. Energies 2021, 14, 1767. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Impact of covid-19 on the convergence of GDP per capita in OECD countries. Reg. Sci. Policy Pract. 2021. [Google Scholar] [CrossRef]
- Green Economy. Available online: https://www.unep.org/regions/asia-and-pacific/regional-initiatives/supporting-resource-efficiency/green-economy (accessed on 10 August 2021).
Variable | Period 1 | Period 2 | Relative Change, % | Absolute Change |
---|---|---|---|---|
X1 | 4.8 | 6.3 | 31.3 | 1.5 |
X2 | 9681.0 | 11,696.4 | 20.8 | 2015.4 |
X3 | 2.8 | 3.5 | 25.0 | 0.7 |
X4 | 24.7 | 33.1 | 34.0 | 8.4 |
X5 | 14.7 | 19.2 | 30.6 | 4.5 |
X6 | 91.5 | 94.6 | 3.4 | 3.1 |
X7 | 79.0 | 84.3 | 6.7 | 5.3 |
X8 | 77.9 | 80.2 | 3.0 | 2.3 |
X9 | 35,622.4 | 40,027.3 | 12.4 | 4404.9 |
X10 | 125.2 | 161.6 | 29.1 | 36.4 |
X11 | 4.1 | 4.0 | −2.4 | −0.1 |
X12 | 493.3 | 482.7 | −2.1 | −10.6 |
X13 | 16.0 | 14.0 | −12.5 | −2.0 |
X14 | 384.1 | 309.8 | −19.3 | −74.3 |
X15 | 4.0 | 3.2 | −20.0 | −0.8 |
Variables | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1 | ||||||||||||||
X2 | 0.608 | 1 | |||||||||||||
X3 | 0.238 | 0.276 | 1 | ||||||||||||
X4 | 0.079 | 0.037 | 0.462 | 1 | |||||||||||
X5 | 0.499 | −0.102 | −0.235 | −0.149 | 1 | ||||||||||
X6 | −0.086 | −0.089 | 0.267 | 0.490 | −0.048 | 1 | |||||||||
X7 | −0.264 | −0.244 | 0.413 | 0.559 | −0.402 | 0.499 | 1 | ||||||||
X8 | 0.180 | 0.090 | 0.376 | 0.590 | 0.091 | 0.517 | 0.250 | 1 | |||||||
X9 | 0.107 | 0.106 | 0.556 | 0.700 | −0.075 | 0.466 | 0.442 | 0.586 | 1 | ||||||
X10 | −0.094 | −0.215 | −0.463 | −0.513 | 0.194 | −0.109 | −0.327 | −0.585 | −0.497 | 1 | |||||
X11 | −0.172 | −0.551 | 0.195 | 0.426 | 0.309 | 0.382 | 0.274 | 0.463 | 0.652 | −0.218 | 1 | ||||
X12 | −0.011 | 0.164 | 0.298 | 0.626 | −0.138 | 0.315 | 0.430 | 0.533 | 0.707 | −0.490 | 0.417 | 1 | |||
X13 | −0.063 | 0.252 | −0.045 | −0.436 | −0.295 | −0.365 | −0.293 | −0.470 | −0.536 | 0.331 | −0.622 | −0.551 | 1 | ||
X14 | −0.265 | −0.060 | 0.020 | −0.317 | −0.363 | −0.130 | 0.275 | −0.601 | −0.339 | 0.285 | −0.396 | −0.372 | 0.568 | 1 | |
X15 | −0.264 | −0.075 | −0.035 | −0.374 | −0.333 | −0.168 | 0.227 | −0.642 | −0.401 | 0.332 | −0.425 | −0.418 | 0.582 | 0.997 | 1 |
Eigenvalues of the Correlation Matrix | ||||
---|---|---|---|---|
Eigenvalue | Difference | Proportion | Cumulative | |
1 | 5.620 | 2.859 | 0.375 | 0.375 |
2 | 2.760 | 0.584 | 0.184 | 0.559 |
3 | 2.177 | 1.090 | 0.145 | 0.704 |
4 | 1.087 | 0.301 | 0.072 | 0.776 |
5 | 0.785 | 0.107 | 0.052 | 0.829 |
6 | 0.679 | 0.127 | 0.045 | 0.874 |
7 | 0.552 | 0.170 | 0.037 | 0.911 |
8 | 0.382 | 0.049 | 0.026 | 0.936 |
9 | 0.333 | 0.091 | 0.022 | 0.958 |
10 | 0.243 | 0.075 | 0.016 | 0.975 |
11 | 0.167 | 0.057 | 0.011 | 0.986 |
12 | 0.111 | 0.035 | 0.007 | 0.993 |
13 | 0.075 | 0.047 | 0.005 | 0.998 |
14 | 0.028 | 0.028 | 0.002 | 1.000 |
15 | 0.000 | 0.000 | 1.000 |
Clusters of OECD Countries | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 |
---|---|---|---|---|---|---|
Number of countries | 5 | 3 | 11 | 8 | 5 | 6 |
X1 | 3.1 | 7.3 | 5.4 | 4.0 | 6.3 | 3.8 |
X2 | 6592.2 | 7040.0 | 11,141.1 | 10,408.4 | 12,589.3 | 7505.0 |
X3 | 1.7 | 2.9 | 4.3 | 2.5 | 1.8 | 2.1 |
X4 | 30.3 | 33.9 | 42.3 | 22.5 | 1.2 | 5.8 |
X5 | 16.4 | 50.9 | 7.6 | 7.5 | 24.0 | 10.1 |
X6 | 94.0 | 97.4 | 98.1 | 93.9 | 75.4 | 84.7 |
X7 | 82.6 | 73.5 | 94.4 | 79.6 | 36.2 | 85.4 |
X8 | 79.5 | 80.5 | 79.7 | 78.3 | 75.5 | 73.6 |
X9 | 41,714.3 | 48,335.1 | 48,713.2 | 33,119.3 | 14,614.0 | 21,034.0 |
X10 | 122.1 | 122.7 | 113.2 | 125.6 | 135.4 | 142.1 |
X11 | 6.5 | 8.0 | 4.5 | 3.3 | 1.2 | 2.9 |
X12 | 633.0 | 478.3 | 586.3 | 505.9 | 319.3 | 342.2 |
X13 | 8.1 | 8.1 | 14.5 | 17.4 | 23.9 | 20.8 |
X14 | 147.5 | 140.9 | 357.2 | 410.7 | 268.7 | 813.3 |
X15 | 1.4 | 1.3 | 3.5 | 4.3 | 3.0 | 8.8 |
Variables | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 1 | ||||||||||||||
X2 | 0.565 | 1 | |||||||||||||
X3 | 0.118 | 0.311 | 1 | ||||||||||||
X4 | 0.107 | −0.004 | 0.469 | 1 | |||||||||||
X5 | 0.454 | −0.212 | −0.409 | −0.147 | 1 | ||||||||||
X6 | −0.032 | −0.128 | 0.211 | 0.449 | 0.043 | 1 | |||||||||
X7 | −0.161 | −0.163 | 0.424 | 0.665 | −0.278 | 0.622 | 1 | ||||||||
X8 | 0.141 | 0.042 | 0.437 | 0.490 | 0.052 | 0.582 | 0.394 | 1 | |||||||
X9 | 0.198 | 0.163 | 0.461 | 0.641 | −0.058 | 0.437 | 0.461 | 0.538 | 1 | ||||||
X10 | −0.026 | 0.056 | −0.408 | −0.403 | 0.062 | −0.135 | −0.390 | −0.523 | −0.250 | 1 | |||||
X11 | −0.078 | −0.591 | 0.003 | 0.270 | 0.488 | 0.310 | 0.196 | 0.363 | 0.469 | −0.100 | 1 | ||||
X12 | 0.184 | 0.204 | 0.221 | 0.523 | 0.056 | 0.364 | 0.403 | 0.509 | 0.692 | −0.370 | 0.318 | 1 | |||
X13 | −0.186 | 0.152 | −0.005 | −0.424 | −0.315 | −0.372 | −0.358 | −0.424 | −0.533 | 0.412 | −0.481 | −0.547 | 1 | ||
X14 | −0.236 | 0.008 | −0.016 | −0.185 | −0.322 | −0.124 | 0.124 | −0.598 | −0.431 | 0.202 | −0.419 | −0.446 | 0.607 | 1 | |
X15 | −0.233 | −0.004 | −0.067 | −0.235 | −0.291 | −0.151 | 0.084 | −0.629 | −0.473 | 0.228 | −0.428 | −0.476 | 0.608 | 0.998 | 1 |
Eigenvalues of the Correlation Matrix | ||||
---|---|---|---|---|
Eigenvalue | Difference | Proportion | Cumulative | |
1 | 5.386 | 2.714 | 0.359 | 0.359 |
2 | 2.672 | 0.604 | 0.178 | 0.537 |
3 | 2.069 | 0.926 | 0.138 | 0.675 |
4 | 1.143 | 0.250 | 0.076 | 0.751 |
5 | 0.893 | 0.128 | 0.060 | 0.811 |
6 | 0.764 | 0.052 | 0.051 | 0.862 |
7 | 0.712 | 0.272 | 0.048 | 0.909 |
8 | 0.440 | 0.098 | 0.029 | 0.939 |
9 | 0.342 | 0.151 | 0.023 | 0.961 |
10 | 0.191 | 0.035 | 0.013 | 0.974 |
11 | 0.156 | 0.051 | 0.010 | 0.985 |
12 | 0.105 | 0.017 | 0.007 | 0.992 |
13 | 0.088 | 0.050 | 0.006 | 0.998 |
14 | 0.038 | 0.037 | 0.003 | 1.000 |
15 | 0.000 | 0.000 | 1.000 |
Clusters of OECD Countries | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 |
---|---|---|---|---|---|---|---|
Number of countries | 7 | 1 | 11 | 3 | 6 | 7 | 3 |
X1 | 5.9 | 8.1 | 6.5 | 9.6 | 4.1 | 5.5 | 8.1 |
X2 | 8383.0 | 2838.0 | 12,988.6 | 19,802.5 | 10,041.8 | 10,874.7 | 14,762.3 |
X3 | 2.3 | 2.5 | 5.0 | 5.6 | 3.2 | 2.5 | 2.5 |
X4 | 37.6 | 27.6 | 43.8 | 46.6 | 29.0 | 22.7 | 3.7 |
X5 | 26.3 | 88.9 | 14.2 | 11.1 | 12.5 | 15.2 | 28.3 |
X6 | 98.6 | 98.0 | 98.0 | 97.3 | 97.4 | 92.1 | 69.2 |
X7 | 85.6 | 73.7 | 94.0 | 90.8 | 87.5 | 85.5 | 33.9 |
X8 | 81.5 | 82.5 | 81.7 | 82.0 | 80.6 | 76.4 | 77.0 |
X9 | 48,148.0 | 49,238.1 | 42,876.5 | 77,999.2 | 31,199.9 | 27,799.7 | 15,775.3 |
X10 | 149.2 | 176.0 | 126.3 | 181.8 | 173.7 | 198.1 | 185.4 |
X11 | 5.9 | 17.4 | 3.4 | 4.3 | 3.4 | 2.7 | 1.1 |
X12 | 569.1 | 555.1 | 521.1 | 645.8 | 447.0 | 366.0 | 297.2 |
X13 | 6.8 | 6.6 | 12.4 | 10.2 | 18.8 | 19.1 | 21.3 |
X14 | 94.6 | 52.2 | 289.5 | 169.7 | 346.1 | 658.3 | 227.2 |
X15 | 0.9 | 0.5 | 2.9 | 1.5 | 3.6 | 7.1 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavurova, B.; Megyesiova, S.; Hudak, M. Green Growth in the OECD Countries: A Multivariate Analytical Approach. Energies 2021, 14, 6719. https://doi.org/10.3390/en14206719
Gavurova B, Megyesiova S, Hudak M. Green Growth in the OECD Countries: A Multivariate Analytical Approach. Energies. 2021; 14(20):6719. https://doi.org/10.3390/en14206719
Chicago/Turabian StyleGavurova, Beata, Silvia Megyesiova, and Matej Hudak. 2021. "Green Growth in the OECD Countries: A Multivariate Analytical Approach" Energies 14, no. 20: 6719. https://doi.org/10.3390/en14206719
APA StyleGavurova, B., Megyesiova, S., & Hudak, M. (2021). Green Growth in the OECD Countries: A Multivariate Analytical Approach. Energies, 14(20), 6719. https://doi.org/10.3390/en14206719