Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Modelling the Timing Belt Dynamic Behavior
3.2. Dynamic Analysis of the Timing Belt Linear Drive Systems
- lead angle of helix ,
- apparent angle of friction .
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pietrusiewicz, K. Projektowanie mechatroniczne. Projektowanie bazujące na modelach. Napędy Sterow. 2015, 11, 122–126. [Google Scholar]
- Heimann, B.; Gerth, W.; Popp, K. Mechatronika: Metody, Komponenty, Przykłady; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2001. [Google Scholar]
- Vasylius, M.; Augustaitis, V.K.; Barzdaitis, V.; Bogdevicus, M. Dynamics of the air blower with gyroscopic couple. Acta Mech. Autom. 2008, 2, 95–98. [Google Scholar]
- Magdziak, Ł.; Malujda, I.; Wilczyński, D.; Wojtkowiak, D. Concept of Improving Positioning of Pneumatic Drive as Drive of Manipulator. Procedia Eng. 2017, 177, 331–338. [Google Scholar] [CrossRef]
- Wojtkowiak, D.; Talaśka, K.; Malujda, I.; Górecki, J.; Wilczyński, D. Modelling and static stability analyses of the hexa-quad bimorph walking robot. MATEC Web Conf. 2019, 254, 02029. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Wu, R.-J.; He, C.-Y.; Guang, C.-H. Dynamic analysis of a hybrid compliant mechanism with flexible central chain and cantilever beam. Mech. Mach. Theory 2021, 155, 104095. [Google Scholar] [CrossRef]
- Song, N.; Peng, H.; Xu, X.; Wang, G. Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory 2020, 154, 104053. [Google Scholar] [CrossRef]
- Shirafuji, S.; Matsui, N.; Ota, J. Novel frictional-locking-mechanism for a flat belt: Theory, mechanism, and validation. Mech. Mach. Theory 2017, 116, 371–382. [Google Scholar] [CrossRef]
- Balta, B.; Sonmez, F.O.; Cengiz, A. Speed losses in V-ribbed belt drives. Mech. Mach. Theory 2015, 86, 1–14. [Google Scholar] [CrossRef]
- Callegari, M.; Cannella, F.; Ferri, G. Multi-body modelling of timing belt dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2003, 217, 63–75. [Google Scholar] [CrossRef]
- Long, S.; Zhao, X.; Yin, H.; Zhu, W. Modeling and validation of dynamic performances of timing belt driving systems. Mech. Syst. Signal Process. 2020, 144, 106910. [Google Scholar] [CrossRef]
- Domek, G.; Kołodziej, A.; Wilczyński, M. Modelling of wear out of timing belt’s pulley. IOP Conf. Ser. Mater. Sci. Eng. 2020, 776, 012069. [Google Scholar]
- Hamilton, A.; Fattah, M.; Campean, F.; Day, A. Analytical Life Prediction Modelling of an Automotive Timing Belt. In SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2008. [Google Scholar]
- Merghache, S.M.; Ghernaout, M.E.A. Experimental and numerical study of heat transfer through a synchronous belt transmission type AT10. Appl. Therm. Eng. 2017, 127, 705–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikušová, N.; Millo, S. Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods. Adv. Sci. Technol. Res. J. 2017, 11, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yang, L.; Cao, M. Simulation analysis of timing belt movement characteristics based on RecurDyn. Vibroeng. Procedia 2019, 22, 13–18. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kukla, M. Determination of maximum torque during carpentry waste comminution. Wood Res. 2020, 65, 771–784. [Google Scholar]
- McCoy, G.A.; Douglass, J.G. Energy Efficient Electric Motor Selection Handbook; U.S. Department of Energy: Washington, DC, USA, 1996.
- Burt, C.; Piao, X.; Gaudi, F.; Busch, B.; Taufik, N.F.N. Electric Motor Efficiency under Variable Frequencies and Loads; Irrigation Training and Research Center Report No. R 06-004; Irrigation Training and Research Center: San Luis Obispo, CA, USA, 2006. [Google Scholar]
- Wieczorek, B.; Warguła, Ł.; Rybarczyk, D. Impact of a Hybrid Assisted Wheelchair Propulsion System on Motion Kinematics during Climbing up a Slope. Appl. Sci. 2020, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowiak, D.; Talaśka, K. Determination of the effective geometrical features of the piercing punch for polymer composite belts. Int. J. Adv. Manuf. Technol. 2019, 104, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhang, D.; Zhang, Z.; Muhammad, M. Investigation on the load-inertia ratio of machine tools working in high speed and high acceleration processes. Mech. Mach. Theory 2021, 155, 104093. [Google Scholar] [CrossRef]
- Urządzenie do Perforacji Pasów Transportujących. Patent Application P.431889, 2019.
- Cusimano, G. Choice of electrical motor and transmission in mechatronic applications: The torque peak. Mech. Mach. Theory 2011, 46, 1207–1235. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, D.; Xiao, J. Conceptual design and parameter optimization of a variable stiffness mechanism for producing constant output forces. Mech. Mach. Theory 2020, 154, 104033. [Google Scholar] [CrossRef]
- Sopouch, M.; Hellinger, W.; Priebsch, H.H. Prediction of vibroacoustic excitation due to the timing chains of reciprocating engines. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2003, 217, 225–240. [Google Scholar] [CrossRef]
- Domek, G. Research on the Contact Area between the Timing Belt and the Toothed Pulley. In Proceedings of the World Congress on Engineering 2011, London, UK, 6–8 July 2011; Volume III. [Google Scholar]
- WHM Wilhelm Herm Muller BRECO Catalog: Pasy Zębate BRECO i BRECOFLEX. Available online: https://www.whm.pl/ (accessed on 21 October 2020).
- PMI Linear Motion Systems Catalog: Prowadnice Liniowe i Śruby Kulowe. Available online: https://archimedes.pl/ (accessed on 21 October 2020).
- Xu, D.; Feng, Z. Research on Dynamic Modeling and Application of Kinetic Contact Interface in Machine Tool. Shock. Vib. 2016, 2016, 5658181. [Google Scholar] [CrossRef]
- SKF Catalog: Łożyska Toczne. Available online: https://www.skf.com/ (accessed on 21 October 2020).
- Warguła, Ł.; Krawiec, P. The research on the characteristic of the cutting force while chipping of the Caucasian Fir (Abies Nordmanniana) with a single-shaft wood chipper. IOP Conf. Ser. Mater. Sci. Eng. 2020, 776, 012012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtkowiak, D.; Talaśka, K.; Wilczyński, D.; Górecki, J.; Wałęsa, K. Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies 2021, 14, 317. https://doi.org/10.3390/en14020317
Wojtkowiak D, Talaśka K, Wilczyński D, Górecki J, Wałęsa K. Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies. 2021; 14(2):317. https://doi.org/10.3390/en14020317
Chicago/Turabian StyleWojtkowiak, Dominik, Krzysztof Talaśka, Dominik Wilczyński, Jan Górecki, and Krzysztof Wałęsa. 2021. "Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model" Energies 14, no. 2: 317. https://doi.org/10.3390/en14020317
APA StyleWojtkowiak, D., Talaśka, K., Wilczyński, D., Górecki, J., & Wałęsa, K. (2021). Determining the Power Consumption of the Automatic Device for Belt Perforation Based on the Dynamic Model. Energies, 14(2), 317. https://doi.org/10.3390/en14020317