Electric Mobility in a Smart City: European Overview †
Abstract
:1. Introduction
2. Efficient and Non-Polluting Transport Systems: Electric Mobility (e-Mobility)
2.1. Literature Background
2.2. Electric Mobility Worldwide
3. E-Mobility Strategies Overview of European Smart Cities
3.1. Material and Methods
- ▪
- Publication status: In press and final
- ▪
- Only peer-reviewed items
- ▪
- Type of publication: Conference Paper, Article, Review, Book Chapter. The following were excluded: Editorial, Note, Book Short Survey, Letter, Erratum, Data Paper, Undefined.
- ▪
- Language: Publications written only in English.
- ▪
- Year: 2010 onwards
- ▪
- Documents that are only relevant to the search string.
3.1.1. Oslo
3.1.2. London
3.1.3. Hamburg
3.1.4. Milan
3.1.5. Florence
3.1.6. Bologna
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. The World’s Cities in 2018—Data Booklet (ST/ESA/ SER.A/417). 2018. Available online: https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 8 October 2020).
- Causone, F.; Sangalli, A.; Pagliano, L.; Carlucci, S. Assessing energy performance of smart cities. Build. Serv. Eng. Res. Technol. 2017, 39, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Klecha, L.; Gianni, F. Designing for Sustainable Urban Mobility Behaviour: A Systematic Review of the Literature. In Citizen, Territory and Technologies: Smart Learning Contexts and Practices; Mealha, Ó., Divitini, M., Rehm, M., Eds.; Smart Innovation, Systems and Technologies; Springer: Cham, Switzerland, 2018; Volume 80. [Google Scholar]
- Porru, S.; Misso, F.E.; Pani, F.E.; Repetto, C. Smart mobility and public transport: Opportunities and challenges in rural and urban areas. J. Traffic Transp. Eng. 2020, 7, 88–97. [Google Scholar] [CrossRef]
- C40 Cities Climate Leadership Group. Available online: https://www.c40.org/ (accessed on 12 November 2020).
- Adami, L.; Tubino, M.; Ragazzi, M.; Conti, F.; Rada, E.C. Local Actions for Reducing Global Greenhouse Gas Footprint: 10 Years of Covenant of Mayors Initiative. Int. J. Sustain. Dev. Plann. 2020, 15, 247–252. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change, The Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 12 November 2020).
- United Nations. Agenda 2030: The Sustainable Development Goals. 2016. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 8 October 2020).
- Enerdata, Global Energy Statistical Yearbook. 2018. Available online: https://www.enerdata.net/publications/world-energy-statistics-supply-and-demand.html (accessed on 8 October 2020).
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministero Della Salute, Direzione Generale Della Prevenzione Sanitaria. Inquinamento Atmosferico e Cambiamenti Climatici, Elementi Per Una Strategia Nazionale di Prevenzione. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2945_allegato.pdf (accessed on 11 December 2020).
- Alfaro-Navarro, J.L.; López-Ruiz, V.R.; Peña, D.N. A new sustainability city index based on intellectual capital approach. Sustainability 2017, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Effects of Transport-Related Air Pollution. 2005. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/74715/E86650.pdf (accessed on 14 October 2020).
- Businge, C.N.; Viani, S.; Pepe, N.; Borgarello, M.; Caruso, C.; Tripodi, G.; Soresinetti, S. Energy efficiency solutions for sustainable urban mobility: Case study of the Milan metropolitan area. Urban Transp. XXIV 2019, 182, 151–163. [Google Scholar]
- EEA. Air Quality in Europe. 2017. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2017 (accessed on 12 October 2020).
- European Commission, Mobility and Transport. Available online: https://ec.europa.eu/transport/themes/urban/urban_mobility_en (accessed on 11 December 2020).
- EU Regulation 2019/1242. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:32019R1242 (accessed on 20 October 2020).
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Utilization of E-Bus Applied to Urban Lines. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019; pp. 651–655. [Google Scholar]
- Kournoutos, N.; Cheer, J. An environmentally adaptive warning sound system for electric vehicles. In Proceedings of the INTER-NOISE 2019 MADRID-48th International Congress and Exhibition on Noise Control Engineering 2019, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Hender, B. Recent developments in battery electric vehicles. Proc. Inst. Electr. Eng. 1965, 112, 2297–2308. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Lim, S. Improvement of multilevel dc/dc converter for e-mobility charging station. Electronics 2020, 9, 2037. [Google Scholar] [CrossRef]
- Venu, S.; Jaybhay, S.; Kadam, K.; Varma, M. High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE. SAE Tech. Paper 2020, 28, 13. [Google Scholar]
- Lave, L.B.; Hendrickson, C.T.; McMichael, F.C. Environmental implications of electric cars. Science 1995, 268, 993–995. [Google Scholar] [CrossRef]
- Requia, W.; Moataz, M.; Higgins, C.; Altaf, A.; Ferguson, M. How clean are electric vehicles? Evidence-based review of the effects of electric mobility on air pollutants, greenhouse gas emissions and human health. Atmos. Environ. 2018, 185, 64–77. [Google Scholar] [CrossRef]
- Batista, T.; Freire, F.; Silva, C.M. Vehicle environmental rating methodologies: Overview and application to light-duty vehicles. Renew. Sustain. Energy Rev. 2015, 45, 192–206. [Google Scholar] [CrossRef]
- Tanaka, M.; Ida, T.; Murakami, K.; Friedman, L. Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan. Transp. Res. Part A Policy Pract. 2014, 70, 194–209. [Google Scholar] [CrossRef]
- Nur, B.M. A case study of socio-cultural and technical factors in automobile design: Discourses between designers and potential users on a new electric vehicle in Africa. Technol. Soc. 2020, 63, 101398. [Google Scholar] [CrossRef]
- Sovacool, B. A transition to plug-in hybrid electric vehicles (PHEVs): Why public health professionals must care. J. Epidemiol. Commun. Health 2010, 64, 185–187. [Google Scholar] [CrossRef]
- Formánek, T.; Tahal, R. Socio-demographic aspects affecting individual stances towards electric and hybrid vehicles in the Czech Republic. Cent. Eur. Bus. Rev. 2020, 9, 78–93. [Google Scholar] [CrossRef]
- Krommes, S.; Schmidt, F. Business model analysis of electric mobility products and services. Int. J. Automot. Tech. Manag. 2017, 17, 316. [Google Scholar] [CrossRef]
- Gatzert, N.; Osterrieder, K. The future of mobility and its impact on the automobile insurance industry. Risk Manag. Insur. Rev. 2020, 23, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Höhne, S.; Tiberius, V. Powered by Blockchain: Forecasting Blockchain use in the electricity market. Int. J. Energy Sect. Manag. 2020, 14, 1221–1238. [Google Scholar] [CrossRef]
- Zeng, L.; Krallmann, T.; Fiege, A.; Stress, M.; Graen, T.; Nolting, M. Optimization of future charging infrastructure for commercial electric vehicles using a multi-objective genetic algorithm and real travel data. Evol. Syst. 2020, 11, 241–254. [Google Scholar] [CrossRef]
- Li, Y. Infrastructure to facilitate usage of electric vehicles and its impact. Transp. Res. Procedia 2016, 14, 2537–2543. [Google Scholar] [CrossRef]
- Lazaroiu, C.; Roscia, M.; Saatmandi, S. Blockchain strategies and policies for sustainable electric mobility into Smart City. In Proceedings of the 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 24–26 June 2020; pp. 363–368. [Google Scholar]
- Bakker, S.; Trip, J.J. Policy options to support the adoption of electric vehicles in the urban environment. Transp. Res. Part D 2013, 25, 18–23. [Google Scholar] [CrossRef]
- Lieven, T. Policy measures to promote electric mobility—A global perspective. Transp. Res. Part A Policy Pract. 2015, 82, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Ewert, A.; Brost, M.K.; Schmid, S.A. Framework Conditions and Potential Measures for Small Electric Vehicles on a Municipal Level. World Electr. Veh. J. 2020, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Rietmann, N.; Lieven, T. How policy measures succeeded to promote electric mobility—Worldwide review and outlook. J. Clean. Prod. 2019, 206, 66–75. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Sanz-Díaz, T. Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review. Sustainability 2018, 10, 2507. [Google Scholar] [CrossRef] [Green Version]
- Massier, T.; Recalde, D.; Sellmair, R.; Gallet, M.; Hamacher, T. Electrification of Road Transport in Singapore and its Integration into the Power System. Energy Technol. 2018, 6, 21–32. [Google Scholar] [CrossRef]
- Khan, S.; Shariff, S.; Ahmad, A.; Saad Alam, M. A Comprehensive Review on Level 2 Charging System for Electric Vehicles. Smart Sci. 2018, 6, 271–293. [Google Scholar] [CrossRef]
- Bickert, S. Financial measures for electric vehicles: Supporting the integration of renewable energy in the mobility sector in Germany. Internat. J. Rene. Ener. Devel. 2014, 3, 45–53. [Google Scholar]
- Zade, M.; You, Z.; Kumaran Nalini, B.; Tzscheutschler, P.; Wagner, U. Quantifying the Flexibility of Electric Vehicles in Germany and California—A Case Study. Energies 2020, 13, 5617. [Google Scholar] [CrossRef]
- Van Triel, F.; Lipman, T.E. Modeling the Future California Electricity Grid and Renewable Energy Integration with Electric Vehicles. Energies 2020, 13, 5277. [Google Scholar] [CrossRef]
- Al Wahedi, A.; Bicer, Y. A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems. Energies 2020, 13, 5095. [Google Scholar] [CrossRef]
- Colbertaldo, P.; Cerniauskas, S.; Grube, T.; Robinius, M.; Stolten, D.; Campanari, S. Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy. Renew. Sustain. Energy Rev. 2020, 133, 110086. [Google Scholar] [CrossRef]
- Koasidis, K.; Karamaneas, A.; Nikas, A.; Neofytou, H.; Hermansen, E.A.T.; Vaillancourt, K. Many miles to Paris: A sectoral innovation system analysis of the transport sector in Norway and Canada in light of the Paris agreement. Sustainability 2020, 12, 5832. [Google Scholar] [CrossRef]
- Lioutas, V.; Adamos, G.; Nathanail, E. How Ready Are Greek Consumers to Use Electric Vehicles? Adv. Intell. Sys. Comput. 2021, 1278, 760–769. [Google Scholar]
- Wager, G.; Whale, J.; Braunl, T. Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia. Renew. Sustain. Energy Rev. 2016, 63, 158–165. [Google Scholar] [CrossRef]
- Duigou, A.L.; Guan, Y.; Amalric, Y. On the competitiveness of electric driving in France: Impact of driving patterns. Renew. Sustain. Energy Rev. 2014, 37, 348–359. [Google Scholar] [CrossRef]
- Raslavičius, L.; Azzopardi, B.; Keršys, A.; Starevičius, M.; Bazaras, Z.; Makaras, R. Electric vehicles challenges and opportunities: Lithuanian review. Renew. Sustain. Energy Rev. 2015, 42, 786–792. [Google Scholar] [CrossRef]
- Masiero, G.; Ogasavara, M.H.; Jussani, A.C.; Risso, M.L. The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases. Renew. Sustain. Energy Rev. 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Asghar, R.; Rehman, F.; Ullah, Z.; Qamar, A.; Ullah, K.; Iqbal, K.; Aman, A.; Nawaz, A.A. Electric vehicles and key adaptation challenges and prospects in Pakistan: A comprehensive review. J. Clean. Prod. 2020, 278, 123375. [Google Scholar] [CrossRef]
- IEA. Global EV Outlook 2019. Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 10 October 2020).
- Brenna, M.; Lazaroiu, G.C.; Roscia, M.; Saadatmandi, S. Dynamic Model for the EV’s Charging Infrastructure Planning through Finite Element Method. IEEE Access 2020, 8, 102399–102408. [Google Scholar] [CrossRef]
- Metha, D.; Hamke, A.K.; Senn, L. In Depth: eMobility 2020. Statista Mobility Market Outlook; 2020. [Google Scholar]
- Sotnyk, I.; Hulak, D.; Yakushev, O.; Yakusheva, O.; Prokopenko, O.V.; Yevdokymov, A. Development of the US electric car market: Macroeconomic determinants and forecasts. Polityka Energetyczna 2020, 23, 147–164. [Google Scholar] [CrossRef]
- Poggio, A. (Motus-E). Rapporto città. MEZ, Mobilità Emissioni Zero. 2020. Available online: https://www.motus-e.org/wp-content/uploads/2020/07/rapporto-cittaMEZ_2020–4.pdf (accessed on 10 October 2020).
- Vallack, H.; Haq, G.; Whitelegg, J.; Cambridge, H. Policy pathways towards achieving a zero-carbon transport sector in the UK in 2050. World Transp. Policy Pract. 2014, 20, 28–42. [Google Scholar]
- HM Governments. The Road to Zero Next Steps Towards Cleaner Road Transport and Delivering Our Lndustrial Strategy. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/739460/road-to-zero.pdf (accessed on 3 December 2020).
- Loustric, I.; Matyas, M. Exploring city propensity for the market success of micro-electric vehicles. Eur. Transp. Res. Rev. 2020, 12, 42. [Google Scholar] [CrossRef]
- Nationale Plattform Elektromobilität. Available online: http://nationale-plattform-elektromobilitaet.de/ (accessed on 10 December 2020).
- Organ. Int. des Constr. d’Automobiles (OICA). Product. Stat. 2017. Available online: http://www.oica.net/category/production-statistics/2016-statistics/ (accessed on 10 December 2020).
- IEA IA—HEV. Annual Report 2016: Hybrid and Electric Vehicles: The Electric Drive Chauffeurs; International Energy Agency. 2017. Available online: http://www.ieahev.org/news/annual-reports/ (accessed on 10 December 2020).
- Tietge, U.; Lutsey, N. Germany, Sleeping Giant of Electric Vehicles, Awakes. Int. Counc. Clean Transp. 2016. Available online: https://www.theicct.org/blog/staff/germany-sleeping-giant-electric-vehicles-awakes (accessed on 10 December 2020).
- ISTAT. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_VEICOLIPRA (accessed on 21 October 2020).
- LEGGE 30 Dicembre 2018, n. 145. Bilancio di Previsione Dello Stato per L’anno Finanziario 2019 e Bilancio Pluriennale per Il Triennio 2019–2021. Available online: https://www.gazzettaufficiale.it/eli/gu/2018/12/31/302/so/62/sg/pdf (accessed on 21 October 2020).
- ICity Rank 2019. Available online: https://www.forumpa.it/citta-territori/icity-rank-2019-milano-firenze-e-bologna-sono-le-citta-piu-smart-ditalia/ (accessed on 4 October 2020).
- Climate and Energy Strategy for Oslo. 2016. Available online: https://www.klimaoslo.no/wp-content/uploads/sites/88/2018/06/Climate-and-Energy-Strategy-2016-English.pdf (accessed on 21 October 2020).
- Oslo Council, Climate Authority. Klima- og Energistrategi for Oslo: Behandlet av Oslo Bystyre; 22.06.2016 (sak 195/16); Oslo, Norway, 2016. [Google Scholar]
- Nasjonal Transportplan—NTP. Available online: https://www.regjeringen.no/no/tema/transport-og-kommunikasjon/nasjonal-transportplan/id2475111/ (accessed on 22 October 2020).
- Asarpota, K.; Nadin, V. Energy Strategies, the Urban Dimension, and Spatial Planning. Energies 2020, 13, 3642. [Google Scholar] [CrossRef]
- Rydningen, U.; Høynes, R.C.; Kolltveit, L.W. Oslo 2019: A car-free city centre WIT. Trans. Ecol. Environ. 2017, 226, 3–16. [Google Scholar]
- Vulkan Oslo. Available online: https://vulkanoslo.no/en/about-vulkan/ (accessed on 7 November 2020).
- Molmen, M. EV charging points in Oslo—400 in 4 years 2008–2011: A city’s strategy to support the use of electric vehicles and become the world’s EV capital. In Proceedings of the 26th Electric Vehicle Symposium, Los Angeles, CA, USA, 6–9 May 2012; Volume 1, pp. 727–731. [Google Scholar]
- Glazener, A.; Khreis, H. Transforming Our Cities: Best Practices towards Clean Air and Active Transportation. Curr. Envir. Health Rep. 2019, 6, 22–37. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Khreisd, H. Car free cities: Pathway to healthy urban living. Environ. Int. 2016, 94, 251–262. [Google Scholar] [CrossRef]
- Wangsness, P.B.; Proost, S.; Rødseth, K.L. Vehicle choices and urban transport externalities. Are Norwegian policy makers getting it right? Transp. Res. D 2020, 86, 102384. [Google Scholar] [CrossRef]
- Aasness, M.A.; Odeck, J. The increase of electric vehicle usage in Norway—Incentives and adverse effects. Eur. Transp. Res. Rev. 2015, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Myklebust, B. EVs in bus lanes—Controversial incentive. In Proceedings of the 2013 World Electric Vehicles Symposium and Exhibition, EVS 20141, Barcelona, Spain, 17–20 November 2014. [Google Scholar]
- IEA. Energy Policies of IEA Countries: Norway 2017 Review; IEA: Paris, France, 2017; Available online: https://www.iea.org/reports/energy-policies-of-iea-countries-norway-2017-review (accessed on 10 October 2020).
- Analitis, A.; Barratt, B.; Green, D.; Beddows, A.; Samoli, E.; Schwartz, J.; Katsouyanni, K. Prediction of PM2.5 concentrations at the locations of monitoring sites measuring PM10 and NOx, using generalized additive models and machine learning methods: A case study in London. Atmos. Environ. 2020, 240, 117757. [Google Scholar] [CrossRef]
- Walton, H.; Dajnak, D.; Beevers, S.; Williams, M.; Watkiss, P.; Hunt, A. Understanding the Health Impacts of Air Pollution in London. 2015. Available online: https://www.london.gov.uk/WHAT-WE-DO/environment/environment-publications/understanding-health-impacts-air-pollution-london (accessed on 3 December 2020).
- Ultra-Low Emission Zone. Further Proposals. Transport for London, Integrated Impact Assessment. 2017. Available online: https://consultations.tfl.gov.uk/environment/air-quality-consultation-phase-3b/user_uploads/integrated-impact-assessment.pdf (accessed on 10 December 2020).
- The Mayor’s Transport Strategy; Greater London Authority: London, UK, 2018. Available online: https://www.london.gov.uk/what-we-do/transport/our-vision-transport/mayors-transport-strategy-2018 (accessed on 23 October 2020).
- Greater London Authority. A Growing Population. Available online: https://www.london.gov.uk//what-we-do/planning/london-plan/current-london-plan/london-plan-chapter-one-context-and-strategy-0 (accessed on 23 October 2020).
- Shaw, S.; Bunce, L. Electrifying London: Connecting with Mainstream Markets. In E-Mobility in Europe 2015 Green Energy and Technology; Leal Filho, W., Kotter, R., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Source London. 2018. Available online: https://www.sourcelondon.net/stations (accessed on 10 December 2020).
- Chong, U.; Yim, S.H.L.; Barrett, S.R.H.; Boies, A.M. Air Quality and Climate Impacts of Alternative Bus Technologies in Greater London. Environ. Sci. Technol. 2014, 48, 4613–4622. [Google Scholar] [CrossRef] [PubMed]
- Statista. Licensed Cars in London, England 1995–2018. Available online: https://www.statista.com/statistics/314980/licensed-cars-in-london-england-united-kingdom/ (accessed on 22 October 2020).
- Greater London Authority. Comparison of Air Quality in London with a Number of World and European Cities; Greater London Authority: London, UK, 2014. Available online: https://www.london.gov.uk/sites/default/files/comparison_of_air_quality_in_world_cities_study_final.pdf (accessed on 22 October 2020).
- European Commission. Air Quality: Commission Sends Final Warning to the UK over Levels of Fine Particle Pollution; European Commission: Brussels, Belgium, 2010; Available online: https://europa.eu/rapid/press-release_IP-10–687_en.htm (accessed on 22 October 2020).
- Shammut, M.; Cao, M.; Zhang, Y.; Papaix, C.; Liu, Y.; Gao, X. Banning Diesel Vehicles in London: Is 2040 Too Late? Energies 2019, 12, 3495. [Google Scholar] [CrossRef] [Green Version]
- London Environment Strategy. Available online: https://www.london.gov.uk/sites/default/files/london_environment_strategy-_draft_for_public_consultation.pdf (accessed on 4 November 2020).
- Clancy, L.; Palmer, S.S.; Blake, J. Developing and procuring London’s highway infrastructure to enable an electric future. Proc. Inst. Civ. Eng. Civ. Eng. 2018, 171, 45–50. [Google Scholar] [CrossRef]
- Contreras, G.; Platania, F. Economic and policy uncertainty in climate change mitigation: The London Smart City case scenario. Technol. Forecast. Soc. Chang. 2019, 142, 384–393. [Google Scholar] [CrossRef]
- Green, C.P.; Heywood, J.; Paniagua, M.N. Did the London congestion charge reduce pollution? Reg. Sci. Urban Econ. 2020, 84, 103573. [Google Scholar] [CrossRef]
- Font, A.; Guiseppin, L.; Blangiardo, M.; Ghersi, V.; Fuller, G.W. A tale of two cities: Is air pollution improving in Paris and London? Environ. Pollut. 2019, 249, 1–12. [Google Scholar] [CrossRef]
- Morton, C.; Lovelace, R.; Anable, J. Exploring the effect of local transport policies on the adoption of low emission vehicles: Evidence from the London Congestion Charge and Hybrid Electric Vehicles. Transp. Policy 2017, 60, 34–46. [Google Scholar] [CrossRef]
- Central London Ultra Low Emission Zone-Six Month Report October 2019. Available online: https://www.london.gov.uk/sites/default/files/ulez_six_month_evaluation_report_oct19.pdf (accessed on 5 November 2020).
- Schatzinger, S.; Lim, C.Y.R.; Braun, S. Rethinking the Taxi: Case Study of Hamburg on the Prospects of Urban Fleets for Enhancing Sustainable Mobility. In Smart and Sustainable Planning for Cities and Regions; Bisello, A., Vettorato, D., Laconte, P., Costa, S., Eds.; Green Energy and Technology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Flämig, H.; Lunkeit, S.; Rosenberger, K.; Wolff, J. Enlarging the scale of BEVs through environmental zoning to reduce GHG emissions: A case study for the city of Hamburg. RTBM 2019, 36, 100418. [Google Scholar] [CrossRef]
- Masterplan Ladeinfrastruktur Hamburg. Available online: https://www.hamburg.de/contentblob/4479262/dcabd1a0157d6ac7c2ab1bfb06b22dc7/data/masterplan-ladeinfrastruktur.pdf (accessed on 23 October 2020).
- Bürgerschaft der Freien und Hansestadt Hamburg. Available online: https://www.hamburg.de/pressearchiv-fhh/13278828/2019–12–03-sk-bue-hamburger-klimaplan2019/ (accessed on 23 October 2020).
- Lange, K.; Knieling, J. EU Smart City Lighthouse Projects between Top-Down Strategies and Local Legitimation: The Case of Hamburg. Urban Plan. 2020, 5, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Hamburg Climate Protection Act. Available online: https://www.hamburg.de/contentblob/13287266/41fec80dbc0bcdc06aa42f937f2bfaf7/data/d-gesetzesvorlage-hamburgs-neues-klimaschutzgesetz.pdf (accessed on 4 November 2020).
- Jahic, A.; Eskander, M.; Schulz, D. Preemptive vs. non-preemptive charging schedule for large-scale electric bus depots. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 2 October 2019; pp. 1–5. [Google Scholar]
- Jahic, A.; Eskander, M.; Schulz, D. Charging Schedule for Load Peak Minimization on Large-Scale Electric Bus Depots. Appl. Sci. 2019, 9, 1748. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, Y.; Wang, J. Factors affecting the electric vehicle demonstration: 14 international cities/regions cases. In Proceedings of the 2015 International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, Spain, 27–29 July 2015; pp. 1–7. [Google Scholar]
- Wang, J.Y.; Liu, Y.Q.; Kokko, A. The Electric Vehicle Development: Experiences Aboard and Enlightenment to China. Appl. Mech. Mater. 2014, 541–542, 1549–1555. [Google Scholar] [CrossRef]
- EV Readiness Index, LeasePlan Report. 2020. Available online: https://www.leaseplan.com/corporate/~/media/Files/L/Leaseplan/documents/news-articles/2020/14–01–2020-document-a.pdf (accessed on 23 October 2020).
- Poggio, A.; Laurenti, M.; De Santis, S.; Izzi, A. Mal’Aria di Città; Legambiente, 2020; Available online: https://www.legambiente.it/wp-content/uploads/2020/01/Malaria-di-citta-2020.pdf (accessed on 4 December 2020).
- Città metropolitana di Milano, Piano Urbano della Mobilità Sostenibile (PUMS); 2018; Available online: https://www.cittametropolitana.mi.it/export/sites/default/PUMS/doc/PUMS-CmMi_Documento-di-Piano.pdf (accessed on 18 October 2020).
- Menga, P.; Buccianti, R.; Bedogni, M.; Moroni, S. Promotion of freight mobility in Milan: Environmental, energy and economical aspects. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–7. [Google Scholar]
- Comune di Milano. 2020. Available online: https://www.comune.milano.it/aree-tematiche/mobilita (accessed on 18 October 2020).
- Boggio, M.; Beria, P. The role of transport supply in the acceptability of pollution charge extension. The case of Milan. Transp. Res. Part A Policy Pract. 2019, 129, 92–106. [Google Scholar] [CrossRef]
- Mussone, L. Analysis of entering flows in the congestion pricing area C of Milan. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–6. [Google Scholar]
- Beria, P. Effectiveness and monetary impact of Milan’s road charge, one year after implementation. Int. J. Sustain. Transp. 2016, 10, 657–669. [Google Scholar] [CrossRef] [Green Version]
- Croci, E. Urban Road Pricing: A Comparative Study on the Experiences of London, Stockholm and Milan. Transp. Res. Rec. 2016, 14, 253–262. [Google Scholar]
- Galluppi, O.; Colzi, F.; Formentin, S.; Savaresi, S.M. A vehicle-user matching tool to encourage electric mobility. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1625–1630, IVS.2017.7995942. [Google Scholar]
- Piano Aria e Clima del Comune di Milano. Documento Preliminare di Piano, Luglio 2020. Available online: https://www.comune.milano.it/documents/20126/126287263/VAS_PAC_Documento+preliminare+di+piano.pdf/85e34bb6–3b38-fae3–225a-6534e950a6b0?t=1593788559259 (accessed on 23 November 2020).
- Ferrero, E.; Alessandrini, S.; Balanzino, A. Impact of the electric vehicles on the air pollution from a highway. Appl. Energy 2016, 169, 450–459. [Google Scholar] [CrossRef]
- Assolombarda, Osservatorio Milano, 3 Edizione. 2019. Available online: https://www.assolombarda.it/centro-studi/osservatorio-milano (accessed on 11 December 2020).
- Comune di Firenze. 2020. Available online: http://mobilita.comune.fi.it/mobilita_sostenibile/mobilita_sostenibile/mobilita_elettrica.html (accessed on 23 November 2020).
- Berzi, L.; Delogu, M.; Pierini, M. Development of driving cycles for electric vehicles in the context of the city of Florence. Transp. Res. D Trans. Environ. 2016, 47, 299–322. [Google Scholar] [CrossRef]
- Parenti, G. Fostering electric mobility in Florence. In Proceedings of the 16th International Conference on Environment and Electrical Engineering, EEEIC 2016, Florence, Italy, 7–10 June 2016. Category numberCFP1651I-CDR; Code 123530. [Google Scholar]
- Città Metropolitana di Firenze, Piano Urbano della Mobilità Sostenibile (PUMS). 2018. Available online: http://www.cittametropolitana.fi.it/wp-content/uploads/PUMS_CM_FI_Quadro_Conoscitivo_FOCUS-FIRENZE-SAL-26–03–2019.pdf (accessed on 4 December 2020).
- Talluri, G.; Grasso, F.; Chiaramonti, D. Is Deployment of Charging Station the Barrier to Electric Vehicle Fleet Development in EU Urban Areas? An Analytical Assessment Model for Large-Scale Municipality-Level EV Charging Infrastructures. Appl. Sci. 2019, 9, 4704. [Google Scholar] [CrossRef] [Green Version]
- Scorrano, M.; Danielis, R.; Giansoldati, M. Mandating the use of the electric taxis: The case of Florence. Transp. Res. Part. A Policy Pract. 2020, 132, 402–414. [Google Scholar] [CrossRef]
- Fissi, S.; Romolini, A.; Gori, E.; Contri, M. The path toward a sustainable green university: The case of the University of Florence. J. Clean. Prod. 2021, 279, 123655. [Google Scholar] [CrossRef]
- Comune di Bologna. 2020. Available online: http://www.comune.bologna.it/trasporti/servizi/2:4321/41986/ (accessed on 22 October 2020).
- Città Metropolitana di Bologna. Piano Urbano della Mobilità Sostenibile (PUMS). 2018. Available online: https://pumsbologna.it/consulta_il_piano/Documenti (accessed on 22 October 2020).
- Navarro, C.; Roca-Riu, M.; Furió, S.; Estrada, M. Designing new models for energy efficiency in urban freight transport for smart cities and its application to the Spanish case. Transp. Res. Rec. 2016, 12, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Air Pollution Monitoring Data in London: 2016 to 2020. Available online: https://www.london.gov.uk/sites/default/files/air_pollution_monitoring_data_in_london_2016_to_2020_feb2020.pdf (accessed on 6 November 2020).
- Hamburg Air Monitoring Network (Hamburger Luftmessnetz). Available online: https://luft.hamburg.de/datenarchiv-und-stationsinfos/4369176/jahresergebnisse/ (accessed on 6 November 2020).
- Climate Budget 2020, Chapter 2. Oslo City Government’s Budget Proposal 2020 with Appendices. Available online: https://www.klimaoslo.no/wp-content/uploads/sites/88/2019/12/Climate-Budget-2020-Oslo.pdf (accessed on 6 November 2020).
- Oslo Municipality’s Statistics Bank. Available online: http://statistikkbanken.oslo.kommune.no/webview/ (accessed on 6 November 2020).
- SDGS REPORT. Statistical Information for the 2030 Agenda in Italy (Rapporto SDGS 2020. Informazioni Statistiche per l’agenda 2030 in Italia). ISTAT. 2020. Available online: https://www.istat.it/it/archivio/242819 (accessed on 8 November 2020).
- Arpa Lombardia. Available online: https://www.arpalombardia.it/Pages/Aria/qualita-aria.aspx (accessed on 10 December 2020).
- ARPAT (Agenzia Regionale per la Protezione Ambientale della Toscana), Indicatori Annuali. Available online: http://www.arpat.toscana.it/temi-ambientali/aria/qualita-aria/indicatori_annuali/index/AGGLOMERATO-DI-FIRENZE/NO2/TUTTE/TUTTE (accessed on 21 November 2020).
- Dong, X.; Zhang, B.; Wang, B.; Wang, Z. Urban households’ purchase intentions for pure electric vehicles under subsidy contexts in China: Do cost factors matter? Transp. Res. Part A Policy Pract. 2020, 135, 183–197. [Google Scholar] [CrossRef]
- Danielis, R.; Rotaris, L.; Giansoldati, M.; Scorrano, M. Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transp. Res. Part A Policy Pract. 2020, 137, 79–94. [Google Scholar] [CrossRef]
- Pevec, D.; Babic, J.; Carvalho, A.; Ghiassi-Farrokhfal, Y.; Ketter, W.; Podobnik, V. A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety. J. Clean. Prod. 2020, 276, 122779. [Google Scholar] [CrossRef]
- BMVI, Bundesministerium für Verkehr und Digitale InfrastrukturAbschlussbericht: Bewertung der Praxistauglichkeit und Umweltwirkungen von Elektrofahrzeugen 2016, Berlin. Available online: https://www.xn--starterset-elektromobilitt-4hc.de/content/3-Infothek/2-Publikationen/29-abschlussbericht-bewertung-der-praxistauglichkeit-und-umweltwirkungen-von-elektrofahrzeugen/now_handbuch_elektrofahrzeuge_web.pdf (accessed on 1 December 2020).
- United Nations Conference on Trade and Development (UNCTAD). Commodities at a Glance. Special Issue on Strategic Battery Raw Materials, N.13. Available online: https://unctad.org/system/files/official-document/ditccom2019d5_en.pdf (accessed on 1 December 2020).
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Eurostat, Database. 2020. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 9 December 2020).
- Rapa, M.; Gobbi, L.; Ruggieri, R. Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies 2020, 13, 6292. [Google Scholar] [CrossRef]
Δ Charging Station | Δ Electric Cars | |
---|---|---|
Northwest | +66% | +182% |
North East | +118% | +151% |
Centre | +42% | +132% |
South | +29% | +188% |
Islands | +44% | +259% |
Total | +130% | +157% |
Total Charging Columns (Data at 30 September 2020) | Electric Cars Registered in 2020 (Data at 30 September 2020) | |
---|---|---|
Northwest | 30% | 28% |
North East | 26% | 41% |
Centre | 26% | 24% |
South | 10% | 4% |
Islands | 8% | 3% |
Oslo | London | Hamburg | Milan | Florence | Bologna |
---|---|---|---|---|---|
Planning and Action Documents | |||||
The Climate and Energy Strategy (2016) [70,71] | London Environmental Strategy (2018) [95] | Master Plan of Public Charging Infrastructure (2014) [104] | Urban Plan of Sustainable Mobility (PUMS) (2018) [114] | Urban Plan of Sustainable Mobility (PUMS) (2019) [128] | Urban Plan of Sustainable Mobility (PUMS) (2019) [133] |
National Transport Plan (2017) [72] | Hamburg Climate Plan (2015, 2019 updated) [105] | ||||
Hamburg Climate Protection Act (2020) [107] | |||||
Goals | |||||
GHG emissions reduction of 50% by 2020, 95% by 2030, zero by 2050 | Zero emissions from the GLA car fleet by 2025, those of bus fleets by 2037, those of most public transport by 2040, those of all means of transport by 2050 | CO2 emissions reduction of 55% by 2030, zero by 2050 | CO2 emissions reduction of 45% by 2030, become carbon neutral by 2050 | CO2 emissions reduction of 40% by 2030, 70% by 2050 | CO2 emissions reduction of 40% by 2030 |
Become climate neutral | Become the European ULEVs capital | Become climate neutral | Become the European e-mobility capital | ||
Approaches | |||||
Ban any type of car in the city centre from 2019 | Creation of an ULEZ which from 2021 will be expanded (from 21 km2 current to 319 km2) | Electrification of the public transport fleet (buses and taxis) | Congestion charge, Area C (which will be transformed into a zero-emission zone) | Increase in public charging points | “Environmental LTZ” by 2030 will allow access to electric vehicles only |
Ban on motor vehicles by 2025 | Recognition of limiting global warming as a national goal within the Hamburg state constitution | Replacement of diesel and petrol buses with fully electric buses (80% by 2028, 100% by 2030) | Granting of new licences to electric taxis | Electrification of PA fleet and public transport by 2030 | |
Full electric public transport by 2030 | Strenghtening public-private partnership | Replacement of diesel/petrol bus fleet with electric buses | 60% of the new tenders sharing reserved to electric mobility | ||
Impacts | |||||
Increased walkability | Reduction in private car travel | Complementarity between electric and combustion taxis | Incentive in the use of public transport | Creation of an electric mobility culture | Incentive in the use of public transport |
Savings in energy use | Increased demand for public transport | Improvement of taxi usage habits | Improving the image of the city | ||
Possible Opportunities | |||||
Invest in cycle paths, reduction of carriageways, extension of sidewalks | Invest in car sharing, bike sharing, cycle paths | Reduction of parking spaces that could be transformed into cycle paths, leading to the creation of environmental and pedestrian zones | Transform area C into a residential area | Involvement in European calls | Rethink the entire historic centre with a view to very low-emission cars |
Investment of resources in communication | In the long run, transform the historic centre into a large pedestrian area | ||||
Involvement of private partners |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggieri, R.; Ruggeri, M.; Vinci, G.; Poponi, S. Electric Mobility in a Smart City: European Overview. Energies 2021, 14, 315. https://doi.org/10.3390/en14020315
Ruggieri R, Ruggeri M, Vinci G, Poponi S. Electric Mobility in a Smart City: European Overview. Energies. 2021; 14(2):315. https://doi.org/10.3390/en14020315
Chicago/Turabian StyleRuggieri, Roberto, Marco Ruggeri, Giuliana Vinci, and Stefano Poponi. 2021. "Electric Mobility in a Smart City: European Overview" Energies 14, no. 2: 315. https://doi.org/10.3390/en14020315
APA StyleRuggieri, R., Ruggeri, M., Vinci, G., & Poponi, S. (2021). Electric Mobility in a Smart City: European Overview. Energies, 14(2), 315. https://doi.org/10.3390/en14020315