Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs
Abstract
:1. Introduction
2. Energy Efficiency of the Oil Sands Industry
2.1. Energy Efficiency of Extraction
2.1.1. Surface Mining
2.1.2. In Situ Production
2.2. Energy Efficiency of Upgrading
2.2.1. Delayed Coking
2.2.2. Hydroconversion
3. Greenhouse Gas Emissions from the Oil Sands Industry
3.1. Greenhouse Gas Emissions from Extraction
3.1.1. Surface Mining
3.1.2. In Situ Production
3.2. Greenhouse Gas Emissions from Upgrading
3.3. Noncombustion and Land Use Associated Emissions
4. Costs in the Oil Sands Industry
4.1. Extraction Costs
4.1.1. Surface Mining Costs
4.1.2. SAGD Costs
4.2. Upgrading Costs
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Natural Resources Canada. Available online: https://www.nrcan.gc.ca/energy-facts/crude-oil-facts/20064 (accessed on 3 July 2021).
- Canadian Association of Petroleum Producers. Available online: http://www.capp.ca/publications-and-statistics/statistics (accessed on 21 May 2020).
- Canadian Association of Petroleum Producers. Available online: http://www.capp.ca/publications-and-statistics/crude-oil-forecast (accessed on 15 July 2020).
- Millington, D. Canadian Oil Sands Supply Costs and Development Projects (2018–2038). Canadian Energy Research Institute. Available online: https://ceri.ca/studies/canadian-oil-sands-supply-costs-and-development-projects-2018–2038 (accessed on 13 January 2020).
- Rafaei, M.; Adeyemo, T.; Bararpour, T.; Bartholameuz, E.; Hossain, N.; Millington, D.; Mikhail, M.; Rahmanifard, H. Economic Recovery Pathways for Canada’s Energy Industry: Part 2—Canadian Crude Oil and Natural Gas. Canadian Energy Research Institute. Available online: https://ceri.ca/assets/files/Study_192B_Full_Report.pdf (accessed on 4 August 2021).
- Petersen, R.; Sizer, N. Tar Sands Threaten World’s largest Boreal Forest. World Resources Institute. Available online: http://wri.org/blog/2014/07/tar-sands-threaten-world-s-largest-boreal-forest (accessed on 14 March 2021).
- Small, C.C.; Cho, S.; Hashisho, Z.; Ulrich, A.C. Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates. J. Pet. Sci. Eng. 2015, 127, 490–501. [Google Scholar] [CrossRef]
- Brandt, A.R.; Englander, J.; Bharadwaj, S. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010. Energy 2013, 55, 693–702. [Google Scholar] [CrossRef]
- Charpentier, A.D.; Bergerson, J.A.; MacLean, H.L. Understanding the Canadian oil sands industry’s greenhouse gas emissions. Environ. Res. Lett. 2009, 4, 014005:1–0145005:11. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Available online: http://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/second-biennial-report.html (accessed on 19 December 2019).
- Environment and Climate Change Canada. Available online: https://unfccc.int/files/focus/long-term_strategies/application/pdf/canadas_mid-century_long-term_strategy.pdf (accessed on 11 July 2021).
- Ricardo Energy & Environment. California Low Carbon Fuel Standard. Available online: https://esc-non-prod.s3.eu-west-2.amazonaws.com/2018/10/California-LCFS-Case-Study-FINAL.pdf (accessed on 7 June 2021).
- European Commission. Available online: http://ec.europa.eu/clima/policies/transport/fuel_en (accessed on 20 August 2020).
- Environment and Climate Change Canada. National Inventory Report 1990–2016: Greenhouse Gas Sources and Sinks in Canada. Available online: https://publications.gc.ca/collections/collection_2018/eccc/En81-4-2016-1-eng.pdf (accessed on 11 July 2021).
- Oil Sands Magazine. Available online: http://www.oilsandsmagazine.com/technical/bitumen-upgrading (accessed on 21 May 2020).
- Oil Sands Magazine. Available online: http://www.oilsandsmagazine.com/technical/mining (accessed on 19 August 2020).
- Nimana, B.; Canter, C.; Kumar, A. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands. Appl. Energy 2015, 143, 189–199. [Google Scholar] [CrossRef]
- Charpentier, A.D.; Kofoworola, O.; Bergerson, J.A.; MacLean, H.L. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application. Environ. Sci. Technol. 2011, 45, 9393–9404. [Google Scholar] [CrossRef] [PubMed]
- Bergerson, J.A.; Kofoworola, O.; Charpentier, A.D.; Sleep, S.; MacLean, H.L. Life cycle greenhouse gas emissions of current oil sands technologies: Surface mining and in situ applications. Environ. Sci. Technol. 2012, 46, 7865–7874. [Google Scholar] [CrossRef] [PubMed]
- Cenovus Energy. Available online: http://cenovus.com/technology/cogeneration.html (accessed on 6 September 2020).
- Oil Sands Magazine. Available online: http://www.oilsandsmagazine.com/news/2016/7/18/mining-versus-in-situ-how-energy-companies-are-shifting-their-priorities (accessed on 6 November 2020).
- Oil Sands Magazine. Available online: http://www.oilsandsmagazine.com/technical/in-situ (accessed on 29 October 2020).
- Oil Sands Magazine. Available online: https://www.oilsandsmagazine.com/projects/thermal-in-situ (accessed on 4 August 2021).
- Nyboer, J.; Groves, S. A Review of Existing Cogeneration Facilities in Canada. CIEEDAC Report: Burnaby, Canada. 2012. Available online: http://docplayer.net/22262019-A-review-of-existing-cogeneration-facilities-in-canada.html (accessed on 19 December 2020).
- Desiderata Energy Consulting Inc. 2014 Oil Sands Co-Generation and Connection Report. Oil Sands Community Alliance Power and Co-generation Task Group Report: Calgary, Canada. 2014. Available online: https://www.oscaalberta.ca/wp-content/uploads/2015/08/2014-Oil-Sands-Cogeneration-Report-FINAL-18-Jun-2014.pdf (accessed on 11 July 2021).
- National Energy Board. Available online: http://www.cer-rec.gc.ca/nrg/ntgrtd/mrkt/nrgsstmprfls/ab-eng.html (accessed on 18 January 2020).
- Bredeson, L.; Quiceno-Gonzalez, R.; Riera-Palou, X.; Harrison, A. Factors driving refinery CO2 intensity, with allocation into products. Int. J. Life Cycle Assess. 2010, 15, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Vriens, L. The End of Coal: Alberta’s coal phase-out. International Institute for Sustainable Development Report: Winnipeg, Canada. 2018. Available online: https://www.iisd.org/system/files/publications/alberta-coal-phase-out.pdf (accessed on 11 July 2021).
- Nimana, B.; Canter, C.; Kumar, A. Energy consumption and greenhouse gas emissions in upgrading and refining of Canada’s oil sands products. Energy 2015, 83, 65–79. [Google Scholar] [CrossRef]
- Brandt, A.R. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production. Environ. Sci. Technol. 2012, 46, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Netzer, D. Alberta Bitumen Processing Integration Study: Final Report. Province of Alberta Economic Development Department and the Alberta Energy Research Institute. 2006. Available online: https://open.alberta.ca/dataset/845b43b9-01d8-4431-bbbe-abe0ac05c7f6/resource/a3b7bb6f-0e85-43fe-933d-d8e363ab846f/download/3529601-2006-alberta-bitumen-processing-integration-study-final-report-march-2006.pdf (accessed on 11 July 2021).
- Jacobs Consultancy. Life Cycle Assessment Comparison of North American and Imported Crudes. Available online: http://seeds4green.net/sites/default/files/life%20cycle%20analysis%20jacobs%20final%20report.pdf (accessed on 23 January 2021).
- Abella, J.P.; Bergerson, J.A. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: Impacts of crude quality and refinery configuration. Environ. Sci. Technol. 2012, 46, 13037–13047. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Brandt, A.R.; Yeh, S.; Englander, J.G.; Han, J.; Elgowainy, A.; Wang, M.Q. Well-to-wheels greenhouse gas emissions of Canadian oil sands products: Implications for US petroleum fuels. Environ. Sci. Technol. 2015, 49, 8219–8227. [Google Scholar] [CrossRef] [PubMed]
- Coordinating Research Council. Transportation Fuel Life Cycle Assessment: Validation and Uncertainty of Well-to-Wheel GHG Estimates: Alpharetta, USA. 2013. Available online: http://crcsite.wpengine.com/wp-content/uploads/2019/05/CRC-E-102-Final-Report.pdf (accessed on 30 September 2021).
- Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A. Evaluating the role of cogeneration for carbon management in Alberta. Energy Policy 2011, 39, 7963–7974. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Canada’s Greenhouse Gas and Air Pollutant Emissions Projections: 2018. Available online: https://publications.gc.ca/collections/collection_2018/eccc/En1-78-2018-eng.pdf (accessed on 11 July 2021).
- Yeh, S.; Jordaan, S.M.; Brandt, A.R.; Turetsky, M.R.; Spatari, S.; Keith, D.W. Land use greenhouse gas emissions from conventional oil production and oil sands. Environ. Sci. Technol. 2010, 44, 8766–8772. [Google Scholar] [CrossRef] [PubMed]
- Söderbergh, B.; Robelius, F.; Aleklett, K. A crash programme scenario for the Canadian oil sands industry. Energy Policy 2007, 35, 1931–1947. [Google Scholar] [CrossRef]
- National Energy Board. Available online: http://www.neb-one.gc.ca (accessed on 17 May 2019).
- World Bank. Available online: https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG (accessed on 22 May 2021).
- Méjean, A.; Hope, C. Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery. Energy Policy 2013, 60, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Arezki, M.R.; Jakab, Z.; Laxton, M.D.; Matsumoto, M.A.; Nurbekyan, A.; Wang, H.; Yao, J. Oil prices and the global economy. International Monetary Fund 2017. Available online: https://www.imf.org/en/Publications/WP/Issues/2017/01/27/Oil-Prices-and-the-Global-Economy-44594 (accessed on 11 July 2021).
- Millington, D.; Murillo, A.; McWhinney, R. Canadian Oil Sands Supply Costs and Development Projects (2014–2048). Canadian Energy Research Institute. Available online: https://ceri.ca/studies/canadian-oil-sands-supply-costs-and-development-projects-2014–2048 (accessed on 13 May 2020).
- Johnson, L.; Kralovic, P.; Romaniuk, A. Canadian Oil Sands Supply Costs and Development Projects (2016–2036). Canadian Energy Research Institute. Available online: https://ceri.ca/assets/files/Study_159_Full_Report.pdf (accessed on 17 May 2020).
- Sapkota, K.; Oni, A.O.; Kumar, A.; Linwei, M. The development of a techno-economic model for the extraction, transportation, upgrading, and shipping of Canadian oil sands products to the Asia-Pacific region. Appl. Energy 2018, 223, 273–292. [Google Scholar] [CrossRef]
- International Energy Agency. Available online: https://www.iea.org/reports/unit-converter-and-glossary (accessed on 18 April 2021).
- Brandt, A.R. Upstream Greenhouse Gas (GHG) Emissions from Canadian Oil Sands as a Feedstock for European Refineries. Department of Energy Resources Engineering, Stanford University: Stanford, CA, USA. 2011. Available online: https://climateactionnetwork.ca/wp-content/uploads/2011/05/Brandt_EU_oilsands_Final.pdf (accessed on 11 July 2021).
- Bergerson, J.A.; Keith, D.W. The truth about dirty oil: Is CCS the answer? Environ. Sci. Technol. 2010, 44, 6010–6015. [Google Scholar] [CrossRef] [PubMed]
- Liggio, J.; Li, S.-M.; Staebler, R.M.; Hayden, K.; Darlington, A.; Mittermeier, R.L.; O’Brien, J.; McLaren, R.; Wolde, M.; Worthy, D.; et al. Measured Canadian oil sands CO2 emissions are higher than estimates made using internationally recommended methods. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
Energy | Technology | Nimana et al. [17] | Nimana et al. [29] | Bergerson et al. [19] | Charpentier et al. [18] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | Range | Default | Unit | Default | Unit | Range | Example scenario | Unit | Range | ||
Diesel | Surface mining | MJ/GJ-bitumen | 4.4–7.1 | 5.53 | L/m3 | 7–15 | 10 | ||||
Natural gas | Surface mining (no cogen.) | MJ/GJ-bitumen | 52.7–74.1 | 61.3 | m3/m3 | 20–80 | 50 | ||||
Surface mining (steam turbine cogen.) | MJ/GJ-bitumen | 61.7–86.4 | 72.0 | ||||||||
Surface mining (gas turbine cogen.) | MJ/GJ-bitumen | 64.2–78.2 | 71.8 | ||||||||
SAGD (no cogen.) | MJ/GJ-bitumen | 123.7–385.2 | 148.2 | ||||||||
SAGD (gas turbine cogen.) | MJ/GJ-bitumen | 228.5–462.7 | 247.8 | ||||||||
Delayed coking (no cogen.) | m3/m3-bitumen | 40.4 | |||||||||
Delayed coking (cogen.) | m3/m3-bitumen | 68.9 | |||||||||
Hydroconversion (no cogen.) | m3/m3-bitumen | 147.1 | |||||||||
Hydroconversion (cogen.) | m3/m3-bitumen | 197.1 | |||||||||
Fuel gas | Delayed coking (no cogen.; cogen.) | kg/m3-bitumen | 47.5 | ||||||||
Hydroconversion (no cogen.; cogen.) | kg/m3-bitumen | 39.1 | |||||||||
Total gas | Delayed coking (no cogen.) | m3/m3-SCO | 95–115 | 105 | m3/m3-SCO | 95–115 | |||||
Hydrocracking (no cogen.) | m3/m3-SCO | 55–115 | 85 | m3/m3-SCO | 55–115 | ||||||
Net electricity | Surface mining (no cogen.) | kWh/GJ-bitumen | 1.8–2.1 | 2.0 | |||||||
Surface mining (steam turbine cogen.) | kWh/GJ-bitumen | 0.3–0.5 | 0.5 | ||||||||
Surface mining (gas turbine cogen.) | kWh/GJ-bitumen | 0.2–1.3 | 0.7 | ||||||||
SAGD (no cogen.) | kWh/GJ-bitumen | 1.2–3.5 | 1.5 | ||||||||
SAGD (gas turbine cogen.) | kWh/GJ-bitumen | 16.0–18.2 | 17.9 | ||||||||
Delayed coking (no cogen.) | kWh/m3-bitumen | 51.9 | |||||||||
Delayed coking (cogen.) | kWh/m3-bitumen | −41.4 | |||||||||
Hydroconversion (no cogen.) | kWh/m3-bitumen | 84.9 | |||||||||
Hydroconversion (cogen.) | kWh/m3-bitumen | −83 | |||||||||
Electricity used | Surface mining (no cogen.; cogen) | kWh/m3-bitumen | 50–100 | 60 | |||||||
SAGD (no cogen.; cogen) | kWh/m3-bitumen | 45–120 | |||||||||
Delayed coking (no cogen.) | kWh/m3-SCO | 40–70 | 55 | kWh/m3-SCO | 40–70 | ||||||
Hydrocracking (no cogen.) | kWh/m3-SCO | 85–130 | 100 | kWh/m3-SCO | 85–130 | ||||||
Total electricity produced | Surface mining (no cogen.; cogen) | kWh/m3-bitumen | 240–2400 | 1200 | |||||||
SAGD (no cogen.; cogen) | kWh/m3-bitumen | 300–3000 | |||||||||
Delayed coking (cogen.) | kWh/m3-SCO | 220–2200 | 1100 | kWh/m3-SCO | 220–2200 | ||||||
Hydrocracking (cogen.) | kWh/m3-SCO | 400–4000 | 2000 | kWh/m3-SCO | 400–4000 |
Technology | Nimana et al. [17] | Nimana et al. [29] | Bergerson et al. [19] | Charpentier et al. [18] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | Range | Default | Unit | Default | Unit | Low | High | Unit | Low | High | |
Surface mining (no cogen.) | g- CO2/MJ-bitumen | 5.4–7.4 | 6.3 | g- CO2/MJ-bitumen | 2.9 | 8.9 | |||||
Surface mining (cogen.) | g- CO2/MJ-bitumen | 2.5 | 8.1 | ||||||||
Surface mining (steam turbine cogen.) | g- CO2/MJ-bitumen | 4.7–6.8 | 5.7 | ||||||||
Surface mining (gas turbine cogen.) | g- CO2/MJ-bitumen | 4.6–4.9 | 4.9 | ||||||||
SAGD (no cogen.) | g- CO2/MJ-bitumen | 9.3–28.9 | 11.3 | g-CO2/MJ-bitumen | 9.5 | 16.1 | |||||
SAGD (cogen.) | g- CO2/MJ-bitumen | 9.0 | 13.8 | ||||||||
SAGD (gas turbine cogen.) | g- CO2/MJ-bitumen | 5.8–20.1 | 18.4 | ||||||||
Delayed coking (no cogen.) | kg- CO2eq/m3-bitumen | 240.3 | g- CO2/MJ-SCO | 7.8 | 15.0 | g- CO2/MJ-SCO | 7.8 | 15.0 | |||
Delayed coking (cogen.) | kg- CO2eq/m3-bitumen | 208.6 | g- CO2/MJ-SCO | 7.4 | 14.2 | g- CO2/MJ-SCO | 7.4 | 14.2 | |||
Hydroconversion (no cogen.) | kg- CO2eq/m3-bitumen | 433.4 | |||||||||
Hydroconversion (cogen.) | kg- CO2eq/m3-bitumen | 365 | |||||||||
Hydrocracking (no cogen.) | g- CO2/MJ-SCO | 7.1 | 16.7 | g- CO2/MJ-SCO | 7.1 | 16.7 | |||||
Hydrocracking (cogen.) | g- CO2/MJ-SCO | 6.4 | 15.5 | g- CO2/MJ-SCO | 6.4 | 15.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, R.; Chiappori, D.V.; Arbuckle, E.J.; Binsted, M.T.; Davies, E.G.R. Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs. Energies 2021, 14, 6374. https://doi.org/10.3390/en14196374
Xing R, Chiappori DV, Arbuckle EJ, Binsted MT, Davies EGR. Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs. Energies. 2021; 14(19):6374. https://doi.org/10.3390/en14196374
Chicago/Turabian StyleXing, Rui, Diego V. Chiappori, Evan J. Arbuckle, Matthew T. Binsted, and Evan G. R. Davies. 2021. "Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs" Energies 14, no. 19: 6374. https://doi.org/10.3390/en14196374
APA StyleXing, R., Chiappori, D. V., Arbuckle, E. J., Binsted, M. T., & Davies, E. G. R. (2021). Canadian Oil Sands Extraction and Upgrading: A Synthesis of the Data on Energy Consumption, CO2 Emissions, and Supply Costs. Energies, 14(19), 6374. https://doi.org/10.3390/en14196374