Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions
Abstract
:1. Introduction
2. Mathematical Formulation
- (a)
- The pressure gradient is absent on the boundary.
- (b)
- No external electric fields exist because of the neglected polarization effect.
- (c)
- Due to the consideration of an infinitely long plate, the governing equations only involve time t and axial coordinate y.
- (d)
- It is assumed that the induced magnetic field is sufficiently weak and has no significant role in the flow process.
3. Method of Solution
3.1. Analyticity of Temperature Profile
Nusselt Number
3.2. Analyticity of Concentration Profile
Sherwood Number
3.3. Analyticity of Velocity Profile
4. Special Cases
4.1. Motion of Plate with Constant Velocity
4.2. Motion of Plate with Linear Velocity
4.3. Motion of Plate with Exponential Acceleration
4.4. Motion of Plate with Sinusoidal Oscillation
5. Results and Discussion
6. Conclusions
- (a)
- Velocity can be elevated to enhance the values of the thermal Grashof number (Gr) and the mass Grashof number (Gc).
- (b)
- Thermal radiation plays a significant role in the development of thermal and momentum boundary layers.
- (c)
- Velocity can be de-accelerated to enhance the values of the magnetic field (M).
- (d)
- Temperature can be elevated to enhance the values of the radiation parameter (Rd).
- (e)
- The concentration field can be reduced by enhancing the value of the chemical reaction parameter Kc.
- (f)
- The magnitude of the velocity field is enhanced with a small value of .
- (g)
- The Nusselt number shows the opposite behavior with a higher value of Rd.
- (h)
- The value of the Prandtl number is 12 for non-Newtonian fluids.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fourier, J.B.J. Théorie Analytique De La Chaleur; Chez Firmin Didot, Père et Fils: Paris, France, 1822. [Google Scholar]
- Cattaneo, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 1948, 3, 83–101. [Google Scholar]
- Christov, C.I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 2009, 36, 481–486. [Google Scholar] [CrossRef]
- Straughan, B. Thermal convection with the Cattaneo-Christov model. Int. J. Heat Mass Transf. 2010, 53, 95–98. [Google Scholar] [CrossRef]
- Salahuddin, T.; Malik, M.Y.; Hussain, A.; Bilal, S.; Awais, M. Mhd flow of Cattanneo–Christov heat flux model for williamson fluid over a stretching sheet with variable thickness:using numerical approach. J. Magn. Magn. Mater. 2016, 401, 991–997. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface. Results Phys. 2018, 8, 397–403. [Google Scholar] [CrossRef]
- Hayat, T.; Farooq, M.; Alsaedi, A.; Al-Solamy, F. Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. 2015, 5, 087159. [Google Scholar] [CrossRef]
- Hashim; Khan, M. On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet. Results Phys. 2017, 7, 310–319. [Google Scholar] [CrossRef]
- Abbasi, F.M.; Shehzad, S.A.; Hayat, T.; Alsaedi, A.; Hegazy, A. Influence of Cattaneo-Christov heat flux in flow of an Oldroyd-B fluid with variable thermal conductivity. Int. J. Numer Methods Heat Fluid Flow 2016, 26, 2271–2282. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Alsaedi, A.; Mustafa, M. A comparative study for flow of viscoelastic fluids with Cattaneo-Christov heat flux. PLoS ONE 2016, 11, e0155185. [Google Scholar] [CrossRef] [Green Version]
- Upadhya, S.M.; Raju, C.S.K.; Mahesha; Saleem, S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux. Results Phys. 2017, 9, 779–786. [Google Scholar] [CrossRef]
- Meral, F.C.; Royston, T.J.; Magin, R. Fractional calculus in viscoelasticity: An experimental Study. Comm. Non-Linear Sci. Num. Simu. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Khalid, A.; Khan, I.; Khan, A.; Shafie, S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Tech. Int. J. 2015, 18, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Akbar, N.S.; Nadeem, S. Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. Int. J. Heat Masstransf. 2012, 55, 375–383. [Google Scholar] [CrossRef]
- Ali, F.; Sheikh, N.A.; Khan, I.; Saqib, M. Magnetic field effect on blood flow of Casson fluid in an axisymmetric cylindrical tube: A fractional model. J. Magne. Mag. Mater. 2017, 423, 327–336. [Google Scholar] [CrossRef]
- Malik, M.Y.; Hussain, A.; Nadeem, S. Boundary layer flow of an Eyring-Powell model fluid due to a stretching cylinder with variable viscosity. Sci. Iran. 2013, 20, 313–321. [Google Scholar]
- Makinde, O.D.; Khan, Z.H.; Ahmad, R.; Haq, R.U.; Khan, W.U. Unsteady MHD flow in a porous channel with thermal radiation and heat source/ sink. Int. J. Appl. Comput. Math. 2019, 5, 1–21. [Google Scholar] [CrossRef]
- Nadeem, S.; Akhtar, S.; Abbas, N. Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface. Alex. Eng. J. 2020, 59, 1847–1856. [Google Scholar] [CrossRef]
- Ellahi, R.; Shivanian, E.; Abbasbandy, S.; Hayat, T. Numerical study of magnetohydrodynamics generalized Couette flow of Eyring-Powell fluid with heat transfer and slip condition. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 1433–1445. [Google Scholar] [CrossRef]
- Qasim, M.; Hayat, T.; Obaidat, S. Radiation effect on the mixed convection flow of a viscoelastic fluid along an inclined stretching sheet. Z. Nat. 2012, 67, 195–202. [Google Scholar] [CrossRef]
- Ayub, M.; Khan, T.A.; Jilani, K. Effect of cold plasma permittivity on the radiation of the dominant TEM-wave by an impedance loaded parallel-plate waveguide radiator. Math. Methods App. Sci. 2016, 39, 134–143. [Google Scholar] [CrossRef]
- Maleque, A. Unsteady MHD Non-Newtonian Casson Fluid Flow due to a Porous Rotating Disk with Uniform Electric Field. Fluid Mech. Open Acc. 2016, 3, 123–131. [Google Scholar]
- El-Aziz, M.A.; Afify, A.A. Effect of Hall current on MHD slip flow of Casson nanofluid over a stretching sheet with zero nanoparticle mass flux. Thermophys. Aeromech. 2019, 26, 429–443. [Google Scholar] [CrossRef]
- Anwar, S.; Zahir, S.; Saeed, I.; Muhammad, J.; Ullah, A.; Taza, G.; Poom, K. Three-Dimensional Casson Nanofluid Thin Film Flow over an Inclined Rotating Disk with the Impact of Heat Generation/Consumption and Thermal Radiation. Coatings 2019, 9, 248. [Google Scholar]
- Mernonr, A.V.; Mazumdar, J.N.; Lucas, S.K. A mathematical study of peristaltic transport of a Casson fluid. Math. Comput. Model 2002, 35, 895–912. [Google Scholar] [CrossRef]
- Shaw, S.; Gorla, R.S.R.; Murthy, P.; Ng, C.O. Pulsatile Casson fluid flow through a stenosed bifurcated artery. Int. J. Fluid Mech. 2009, 36, 43–63. [Google Scholar] [CrossRef]
- Mustafa, M.; Hayat, T.; Pop, I.; Aziz, A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf. Asian Res. 2011, 40, 563–576. [Google Scholar] [CrossRef]
- Saeed, S.T.; Bilal, M.B.; Baleanu, D. A fractional study of generalized Oldroyd-B fluid with ramped conditions via local and non-local kernels. Nonlinear Eng. Model. Appl. 2021, 10, 177–186. [Google Scholar] [CrossRef]
- Bilal, M.B.; Atangana, A.; Saeed, S.T. MHD free convection flow over a vertical plate with ramped wall temperature and chemical reaction in view of non-singular kernel. Fract. Order Anal. Theory Methods Appl. 2020, 253–279. [Google Scholar] [CrossRef]
- Abro, K.A.; Ilyas, K. Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Therm. Sci. 2019, 23, 883–898. [Google Scholar]
- Abro, K.A.; Gomez-Aguilar, J.F. A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana- Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 2019, 134, 101. [Google Scholar] [CrossRef]
- Saeed, S.T.; Khan, I.; Riaz, M.B.; Husnine, S.M. Study of Heat Transfer under the Impact of Thermal Radiation, Ramped Velocity, and Ramped Temperature on the MHD Oldroyd-B Fluid Subject to non-integer Differentiable Operators. J. Math. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Saeed, S.T.; Abro, K.A.; Almani, S. Role of single slip assumption on the viscoelastic liquid subject to non-integer differentiable operators. Math. Methods Appl. Sci. 2021, 44, 6005–6020. [Google Scholar] [CrossRef]
- Iftikhar, N.; Saeed, S.T.; Riaz, M.B. Fractional study of heat and mass transfer of MHD Oldroyd-B fluid with ramped velocity and temperature. Comp. Methods Diff. Eqs. 2021, 1–28. [Google Scholar] [CrossRef]
- Riaz, M.B.; Saeed, S.T.; Baleanu, D. Role of Magnetic field on the Dynamical Analysis of Second Grade Fluid: An Optimal Solution subject to Non-integer Differentiable Operators. J. Appl. Comp. Mech. 2021, 7, 54–68. [Google Scholar]
- Abdeljawad, T.; Riaz, M.B.; Saeed, S.T.; Iftikhar, N. MHD Maxwell Fluid with Heat Transfer Analysis under Ramp Velocity and Ramp Temperature Subject to Non-Integer Differentiable Operators. Comp. Model Eng. Sci. 2021, 126, 821–841. [Google Scholar]
- Riaz, M.B.; Saeed, S.T. Comprehensive analysis of integer order, Caputo-Fabrizio and Atangana-Baleanu fractional time derivative for MHD Oldroyd fluid with slip effect and time dependent boundary condition. Disc. Cont. Dyn. Syst. 2021, 14, 3719–3746. [Google Scholar] [CrossRef]
- Saeed, S.T.; Riaz, M.B.; Baleanu, D.; Abro, K.A. A Mathematical Study of Natural Convection Flow through a Channel with nonsingular Kernels: An Application to Transport Phenomena. Alex. Eng. J. 2020, 59, 2269–2281. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, S.T.; Riaz, M.B.; Abro, K.A.; Husnine, S.M.; Nisar, K.S. Influence in a Darcy’s Medium with Heat Production and Radiation on MHD Convection Flow via Modern Fractional Approach. J. Mater. Res. Tech. 2020, 9, 10016–10030. [Google Scholar] [CrossRef]
- Riaz, M.B.; Siddiqui, M.; Saeed, S.T.; Atangana, A. MHD Oldroyd-B Fluid with Slip Condition in view of Local and Nonlocal Kernels. J. Appl. Comp. Mech. 2021, 7, 116–127. [Google Scholar]
- Riaz, M.B.; Saeed, S.T.; Baleanu, D.; Ghalib, M. Computational results with non-singular & non-local kernel flow of viscous fluid in vertical permeable medium with variant temperature. Front. Phys. 2020, 8, 275. [Google Scholar]
- Saeed, S.T.; Riaz, M.B.; Baleanu, D.; Akgul, A.; Husnine, S.M. Exact Analysis of Second Grade Fluid with Generalized Boundary Conditions. Intel. Auto. Soft Comp. 2021, 28, 547–559. [Google Scholar] [CrossRef]
- Rehman, A.U.; Riaz, M.B.; Akgul, A.; Saeed, S.T.; Baleanu, D. Heat and mass transport impact on MHD second grade fluid: A comparative analysis of fractional operators. Heat Trans. Asian Res. 2021. [Google Scholar] [CrossRef]
- Rehman, A.U.; Riaz, M.B.; Saeed, S.T.; Yao, S. Dynamical analysis of radiation and heat transfer on MHD second grade fluid. Comp. Model Eng. Sci. 2021. [Google Scholar] [CrossRef]
- Rehman, A.U.; Riaz, M.B.; Awrejcewicz, J.; Baleanu, D. Exact solutions of thermomagetized unsteady non-singularized Jeffrey fluid: Effect of ramped velocity, concentration with Newtonian heating. Results Phys. 2021, 26, 104367. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Tamnanloo, J.; Mousavi, S.H.; Miandoab, E.S.; Hosseini, E.; Ghasem, H.; Mozaffari, S. Discrete-Continuous genetic algorithm for designing a mixed refrigerant cryogenic process. Ind. Eng. Chem. Res. 2021, 60, 7700–7713. [Google Scholar] [CrossRef]
- Tesema, T.E.; Kookhaee, H.; Habteyes, T.G. Extracting electronics transition bands of adsorbates from Molecule-Plasmon excitation coupling. J. Phys. Chem. Lett. 2020, 11, 3507–3514. [Google Scholar] [CrossRef]
- Ghasemi, H.; Mozaffari, S.; Mousavi, S.H.; Aghabarari, B.; Abu-Zahra, N. Decolonization of wastewater by heterogeneous Fenton reaction using MnO2-Fe3O4/CuO hybrid catalysts. J. Enviro. Chem. Eng. 2021, 9, 105091. [Google Scholar] [CrossRef]
- Wang, C.F.; Kafle, B.; Tesema, T.E.; Kookhaee, H.; Habteyes, T.G. Molecular sensitivity of near field vibrational infrared imaging. J. Phys. Chem. C 2020, 124, 21018–21026. [Google Scholar] [CrossRef]
- Alberghi, C.; Candido, L.; Testoni, R.; Utili, M.; Zucchetti, M. Verification and validation of COMSOL magnetohydrodynamic models for liquid metal breeding blankets technologies. Energies 2021, 14, 5413. [Google Scholar] [CrossRef]
- Melchiorri, L.; Narcisi, V.; Giannetti, F.; Caruso, G.; Tassone, A. Development of a RELAP5/MOD3.3 module for MHD pressure drop analysis in liquid metals loops: Verification and validation. Energies 2021, 14, 5538. [Google Scholar] [CrossRef]
- Bilal, S.; Majeed, A.H.; Mahmood, R.; Khan, I.; Sheikh, A.H.; Sherif, E.-S.M. Heat and mass transfer in hydromagnetic second grade fluid past a porous inclined cylinder under the effects of thermal dissipation, diffusion and Radiative heat flux. Energies 2020, 13, 278. [Google Scholar] [CrossRef] [Green Version]
- Bilal, S.; Rehman, M.; Noeiaghdam, S.; Ahmed, H.; Akgul, A. Numerical analysis of natural convection driven flow of a non-Newtonian power-law fluid in a Trapezoidal enclosure with a U-shaped constructal. Energies 2021, 14, 5355. [Google Scholar] [CrossRef]
- Sarris, E.; Gravanis, E. Flow regime analysis of the pressure build up during CO2 injection in saturated porous rock formation. Energies 2019, 12, 2972. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, S.T.; Riaz, M.B.; Awrejcewicz, J.; Ahmad, H. Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions. Energies 2021, 14, 6243. https://doi.org/10.3390/en14196243
Saeed ST, Riaz MB, Awrejcewicz J, Ahmad H. Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions. Energies. 2021; 14(19):6243. https://doi.org/10.3390/en14196243
Chicago/Turabian StyleSaeed, Syed Tauseef, Muhammad Bilal Riaz, Jan Awrejcewicz, and Hijaz Ahmad. 2021. "Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions" Energies 14, no. 19: 6243. https://doi.org/10.3390/en14196243
APA StyleSaeed, S. T., Riaz, M. B., Awrejcewicz, J., & Ahmad, H. (2021). Exact Symmetric Solutions of MHD Casson Fluid Using Chemically Reactive Flow with Generalized Boundary Conditions. Energies, 14(19), 6243. https://doi.org/10.3390/en14196243