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Abstract: Dynamic analysis of magnetic fluids with the combined effect of heat sink and chemi-
cal reactions based on their physical properties demonstrates strong shock resistance capabilities,
low-frequency response, low energy consumption, and high sensitivity. Therefore, the applied
magnetic field always takes diamagnetic, ferromagnetic, and paramagnetic forms. The influence of
radiation is considered in the temperature profile. This manuscript investigates an analytic solution
of incompressible and magnetic Casson fluid in Darcy’s medium subjected to temperature and
concentration dependence within a porous-surfaced plate with generalized boundary conditions.
The substantial mathematical technique of the Laplace transform with inversion is invoked in the
governing equations of the magnetic Casson fluid. The analytic results are transformed into a special
function for the plate with a constant velocity, a plate with linear velocity, a plate with exponential
velocity, and a plate with sinusoidal velocity. Graphical illustrations of the investigated analytic
solutions at four different times are presented. Our results suggest that the velocity profile decreases
by increasing the value of the magnetic field, which reflects the control of resistive force. The Nusselt
number remains constant at a fixed Rd and is reduced by raising the Rd value.

Keywords: magnetized Casson fluid; heat production; Laplace transforms; chemical reaction

1. Introduction

Heat transfer is mainly observed due to variation in the temperature of bodies. This
process plays a vital role in mechanization and industries such as climate engineering,
device cooling, nuclear power plants, and energy acquisition. The well-known Fourier
law for heat transfer [1] and Fick’s law for mass transfer have been widely used in the
literature. The fragility of Fourier law is that the initial bugging is immediately perceived
by the medium, which is impractical. The classical Fourier law was amended by adding
relaxation time to heat flux by Cattaneo [2]. Christov [3] further modified Cattaneo’s law
by incorporating a Lie derivative for the heat flux. The Cattaneo–Christov theory has been
applied to both Newtonian and non-Newtonian fluids with various physiological effects.
The Cattaneo–Christov model was discussed by Straughan for the thermal convection
of a viscous fluid [4]. Salahuddin et al. [5] applied the theory given in [3] to Williamson
fluid. The flow of Eyring–Powell fluid over an exponentially stretching surface in three
dimensions was reported by Hayat and Nadeem [6] following [3]. With the same theory,
Maxwell fluid flow with an expanding sheet with changeable thickness was studied by
Hayat et al. [7]. Moreover, Hashim and Khan [8] considered Carreau fluid with a slender
sheet under the effect of the model in [3]. Oldroyd-B fluid was analyzed employing [3]
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by Abbasi et al. [9]. Hayat et al. [10] presented a comparative study of viscoelastic fluids
through [3]. Unsteady and nonlinear convection of micro- and nanofluids under [3] was
recently stated by Upadhya et al. [11].

Non-Newtonian fluids have extensive use in industrial and engineering processes
such as the production of paper, polymer processing, geological flows in the earth mantle,
ink printing, paint suspensions, and biological flows. Thus, the analysis of such fluids
is of substantial research interest and significant importance. Typical characteristics of
the flow of non-Newtonian fluids have become a crucial area of research for scientists,
mathematicians, engineers, and researchers. Strain rate and stress are a combination
of linear and nonlinear relations characterized by Newtonian fluid and non-Newtonian
fluids, respectively. With the relationship between strain rate and stress, non-Newtonian
fluids, polymer solutions, slurries, and pastes, to mention just a few, are difficult for
developing mathematical modeling in terms of differential equations. Due to this reason,
non-Newtonian fluids give rise to an abundance of rheological mathematical models of
fluids. We classify such fluids models by century: 18th century, from 1867 to 1893 (Barus
and Maxwell model), and 19th century, from 1922 to 1995 (Blatter model, Ellis model,
Giesekus model, Phan–Thien–Tanner model, Johnson–Tevaarwerk model, Carreau–Yasuda
model, Carreau model, Cross model, Rivlin–Ericksen model, Oldroyd-8 constants model,
Oldroyd-B model, Rivlin model, generalized Burgers, Eyring, and Williamson fluid model),
among others. Among these fluid models, which are the most accurate and treated fluid
models in the biofield, is the so-called Casson fluid model (1959). The main significance of
this model is to characterize the pseudoplastic properties of yield stress. Common, useful
examples of the Casson model are concentrated fruit juices, jelly, tomato sauce, and honey,
among others [12–16]. To characterize the rheology of Casson fluid, several authors have
adopted different research directions.

Magneto fluid dynamics has become an important topic in recent years. The study of
magnetohydrodynamics has assisted real-life applications. For instance, electromagnetic
forces can be used to pump liquid metals without the need for any moving parts. The
concept of MHD has significant importance in stellar and planetary processes and has
also boosted engineering applications, such as direct conversion generators and flow
problems of ionized gasses. MHD unsteady flow in a porous channel with convective
heat conditions at the surface was explored by Makinde [17], whose study concludes that
the presence of a magnetic field strengthens flow control. The boundary layer flow of
MHD Maxwell nanofluid was discussed with numerical assistance [18]. Ellahi et al. [19]
numerically inquired about the Couette flow of heat transfer in magnetohydrodynamics.
Thermal radiation is a ruling factor in the thermodynamic analysis of high-temperature
systems such as boilers and solar connectors. Heat and mass relocation analysis with
thermal radiation plays a vital role in manufacturing industries, such as the design of
flippers, gas motors, and cooling towers; various propulsion devices for aircraft, energy
utilization, and food processing; and diverse agricultural, military, and health applications.
As a result, a lot of work has been conducted on fluid flow considering radiation in
thermal radiation. The effect of thermal radiation has been analyzed for viscoelastic
fluids. The Rosseland approximation was applied to characterize the heat flux in a heat
equation by Qasim et al. [20]. Ayub et al. [21] discussed the influence of a wall shield
on the radiation of a transverse electromagnetic wave. The solution was obtained by the
Wiener–Hopf technique.

Maleque [22] described the porous effects of Casson fluid flow with an axial uniform
magnetic field in which similarity parameters were applied to reduce nonlinear ordinary
differential equations. In order to determine the angular velocity approximately, the
numerical shooting method was used. Abd El-Aziz and Afify [23] numerically analyzed
the slippage of Casson nanofluid to enhance the warmth transfer of an overextended
sheet. Their main emphasis was to validate their obtained results by comparing them with
existing literature. Casson fluid over a steady spinning plane based on three-dimensional,
thin-film, nanofluid flow was examined by Anwar et al. [24]. They used the homotopy
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analysis method to calculate the governing equation and Mathematica software (Wolfram
Mathematica, New Jersey, NJ, United State) to provide a graphical illustration of the
velocity gradient, temperature, and concentration gradient of the Casson model. Although
research on the Casson model is ongoing, we include some related studies based on
heat transfer [25–29], fractional models of fluids with magnetic field [30–40], and some
others [41–54] herein. Motivated by the above discussion, we analyzed an analytic solution
of incompressible and magnetic Casson fluid subjected to temperature and concentration
dependence within a porous-surfaced plate.

The intention of this manuscript is to develop exact symmetric solutions of MHD Cas-
son fluid with chemically reactive flow with the help of generalized boundary conditions.
A substantial mathematical technique of Laplace transforms with inversion is applied to
magnetic Casson fluid. In Section 2, dimensionless governing equations are developed. In
Section 3, exact solutions of concentration, temperature, and velocity field are developed
with the help of the Laplace transformation. In Section 4, analytic solutions are transformed
into special functions for a plate with constant velocity, a plate with linear velocity, a plate
with exponential velocity, and a plate with sinusoidal velocity. In Section 5, graphical
illustrations of the investigated analytic solutions at four different times are presented.
Finally, concluding observations are listed in Section 6.

2. Mathematical Formulation

Let us consider incompressible MHD Casson fluid with a permeable surface with
inclination angle γ and magnetic field Bo normal to the plate. At t > 0, the plate started to
move with velocity u′(y′, t′), having its concentration and temperature depend upon time as
T′∞ + T′wh′(t′), and C′∞ + C′wg′(t′). The physical model describing flow is given in Figure 1.
We suppose that the rheological equation for incompressible Casson fluid [12,13] is

τmn =

 2
(

µr +
px√
2π

)
emn, π > πc

2
(

µr +
px√
2πc

)
emn, π < πc

.

Figure 1. Geometrical presentation of Casson fluid.

Some necessary assumptions considered to formulate the mathematical model are
described as:

(a) The pressure gradient is absent on the boundary.
(b) No external electric fields exist because of the neglected polarization effect.
(c) Due to the consideration of an infinitely long plate, the governing equations only

involve time t and axial coordinate y.
(d) It is assumed that the induced magnetic field is sufficiently weak and has no significant

role in the flow process.
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Following these assumptions, primary flow, temperature, and concentration equations
are derived under Rosseland and Boussinesq’s approximation.

∂u′

∂t′
= υ

(
1 +

1
λ

)
∂2u′

∂y′2
+ gβ

(
T′ − T′∞

)
cosγ + gβcosγC′ − gβcosγC′∞ −

σB2
0

ρ
u′ −

(
υ

Kp
+

υ

Kp

1
λ

)
u′, (1)

ρCp

(
∂T′

∂t′

)
= K

(
∂2T′

∂y′2

)
−
(

∂q′r
∂y′

)
+ S

(
T′ − T′∞

)
, (2)(

∂C′

∂t′

)
= D

(
∂2C′

∂y′2

)
+ kcC′ − kcC′∞. (3)

The initial boundary conditions are

t′ ≤ 0, u′(y, 0) = 0, T′(y, 0) = T∞, C′(y, 0) = C∞, y′ ≥ 0, (4)

t′ > 0, u′(y, t) = u0 f ′
(
t′
)
, T′(y, t) = T′∞ + T′wh′

(
t′
)
, C′(y, t) = C′∞ + C′wg′

(
t′
)
, y′ = 0, (5)

t′ > 0, u′(y, t)→ 0, T′(y, t)→ T′∞, C′(y, t)→ C′∞, y′ → ∞. (6)

Radiative flux is defined by using the Rosseland approximation [32],

qr = −
4σ0∂T4

3k
. (7)

T4 is a linear function and expressed by the Taylor expansion. By neglecting higher
powers, we have

T4 = T4
∞ + 4TT3

∞ − 4T∞T4
∞ + 6T2

∞(T − T∞)2 + . . . . . . , (8)

Substituting Equations (7) and (8) into Equation (2), the required form of the tempera-
ture profile is given as:

ρCp
∂T
∂t

= K
(

1 +
16σ0∂T3

∞
3kk1

)
∂2T
∂y2 + ST − ST∞. (9)

For the simplification of the governing equations, Equations (1)–(3), we introduce the
dimensionless variable among the governing equations of Casson fluid. We define them as
described below:

y =
u0

υ
y′, u =

u′

u0
, t =

u2
0

υ
t′, T =

T′ − T′∞
T′w

, C =
C′ − C′∞

C′w
, Pr =

µCp

K
, S =

υ

ρCpu2
0

S′, (10)

Sc =
υ

D
, M =

σB2
0υ

ρu2
0

, Kc =
υ

K′cu2
0

, K1 =
υ4

kpu4
0

, kp =
υ2

u2
0

k′p. (11)

After invoking the dimensionless quantities in Equations (1)–(3), we simplify the
governing equations of Casson fluid as:

∂u
∂t

=

(
1 +

1
λ

)
∂2u
∂y2 + GrcosγT + GccosγC−

(
M +

1
k1

(
1 +

1
λ

))
u, (12)

∂T
∂t

=
1
Pr

(
1 +

4
3

Rd

)
∂2T
∂y2 − ST, (13)

∂C
∂t

=
1
Sc

∂2C
∂y2 − KcC, (14)
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with imposed conditions

t ≤ 0, u(y, 0) = 0, T(y, 0) = C(y, 0) = 0, y ≥ 0, (15)

t > 0, u(y, t) = f (t), T(y, t) = h(t), C(y, t) = g(t), y = 0, (16)

t > 0, u(y, t)→ 0, T(y, t)→ 0, C(y, t)→ C, y→ ∞. (17)

3. Method of Solution
3.1. Analyticity of Temperature Profile

The analyticity of the temperature distribution can be derived for the coupled equation
by utilizing the Laplace transform on (13). Using appropriate conditions (15)–(17), we have

qT(y, q) + ST(y, q) =
1
Pr

(
1 +

4
3

Rd

)
∂2T(y, q)

∂y2 . (18)

Equation (18) is a homogenous linear differential equation that can be evaluated by
means of elementary approaches with appropriate conditions (15)–(17). The solution for
Equation (18) is obtained as

T(y, q) = H(q) × e−y
√

Pr0q+Pr0S (19)

Taking inverse (19) by means of the Laplace transformation, we obtain a suitable
result as

T(y, t) =
∫ t

0
h′(t− s) ×

(
y
√

Pr0, q, S, 0
)

ds (20)

Nusselt Number

To estimate the heat transfer rate, the Nusselt number is used, which is calculated as:

Nu = − ∂T(y, t)
∂y

∣∣∣∣
y=0

.

3.2. Analyticity of Concentration Profile

The analyticity of the concentration field can be derived for the coupled equation by
utilizing the Laplace transform on (14) using appropriate conditions (15)–(17). We arrive at

Sc(q + Kc)C(y, q) =
∂2C(y, q)

∂y2 . (21)

Equation (21) is a homogenous linear differential equation that can be evaluated by
means of elementary approaches with appropriate conditions (15)–(17). The solution of
Equation (21) is obtained as

C(y, q) = G(q)e−y
√

Scq+ScKc (22)

Taking inverse (22) by means of the Laplace transformation, we obtain a suitable
result as

C(y, t) =
∫ t

0
g′(t− s)×

(
y
√

Sc, q, Kc, 0
)

ds, (23)

where the property of special function used on (23) is defined as

(y, t, x, y, z) = L−1
(

exp−y
√

z
√

s + y
s− x

)
, (24)
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(y, t, x, y, z) =
ext

2

(
e−y
√

z
√

x+yer f c
(

y
√

z
2
√

t
−
√

xt + yt
)
+ ey

√
z
√

x+yer f c
(

y
√

z
2
√

t
+
√

xt + yt
))

. (25)

Sherwood Number

To estimate the mass transfer rate from plate to fluid, the Sherwood number is used,
which is calculated as:

Sh = − ∂C(y, t)
∂y

∣∣∣∣
y=0

.

3.3. Analyticity of Velocity Profile

The analyticity of the velocity field can be derived for coupled equations, and by
utilizing the Laplace transform on (12) using appropriate conditions (15)–(17), we arrive at

ηqu(y, q) + ηM0u(y, q) =
∂2u(y, q)

∂y2 + ηGrcosγT(y, q) + ηGccosγC(y, q). (26)

The general solution of (26) after the substitution of (19) and (22) is

u(y, q) = c1ey
√

η(q+M0) + c2e−y
√

η(q+M0) − ηGrcosγH(q)e−y
√

Pr0(q+S)

a1q + a2
− ηGccosγG(q)e−y

√
Scq+ScKc

a3q + a4
. (27)

Using boundary conditions, the final form of the velocity profile is

u(y, q) = F(q)e−y
√

η(q+M0) + ηGrcosγH(q)
a1(q+A1)

(
ey
√

η(q+M0) − e−y
√

Pr0(q+S)
)

+ ηGccosγG(q)
a3(q+A2)

(
ey
√

η(q+M0) − e−y
√

Scq+ScKc
)

.
(28)

Here, we generate some letting parameters to avoid lengthy and cumbersome calculations

M0 = M + 1
ηk1

, Pr0 = Pr
1+ 4

3 Rd
, a1 = Pr0 − η, a2 = SPr0 − ηM0,

a3 = Sc − η, a2 = ScKc − ηM0, A1 = a2
a1

, A2 = a4
a3

, 1
η = 1 + 1

λ .
(29)

Taking inverse (27) by means of the Laplace transformation, we obtain a suitable result as

u(y, t) =
∫ t

0 f ′(t− s)(y, q, 0, M0, η)ds + ηGrcosγ
a1

∫ t
0 h′(t− s)((y, q,−A1, M0, η)− (y, q,−A1, S, Pr0))ds

+ ηGccosγ
a3

∫ t
0 g′(t− s)((y, q,−A2, M0, η) − (y, q,−A2, Kc, Sc))ds.

(30)

4. Special Cases

It is further noted that some interesting solutions can be recovered from Equation (30),
which represents the final solution of velocity with the generalized boundary conditions
on temperature, concentration, and velocity. For the sake of new solutions on the basis of
generalized boundary conditions, we consider H(q) = G(q) = 1

q in Equation (28), and
we arrive at

u(y, q) = F(q)e−y
√

ηq+ηM0 + ηGrcosγ
a1 A1

(
e−y
√

ηq+ηM0
q − e−y

√
Pr0q+Pr0S

q

)
− ηGrcosγ

a1 A1

(
e−y
√

ηq+ηM0
q+A1

− e−y
√

Pr0q+Pr0S

q+A1

)
− ηGrcosγ

a1 A1

(
e−y
√

ηq+ηM0
q+A1

− e−y
√

Pr0q+Pr0S

q+A1

)
+ ηGccosγ

a3 A2

(
e−y
√

ηq+ηM0
q − e−y

√
Scq+ScKc

q

)
− ηGccosγ

a3 A2

(
e−y
√

ηq+ηM0
q+A2

− e−y
√

Scq+ScKc

q+A2

)
.

(31)
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The inverse Laplace of Equation (31) using (24) and (25) is

u(y, t) =
∫ t

0 f ′(t− s) × (y, q, 0, M0, η)ds
+ ηGrcosγ

a1 A1
((y, q, 0, M0, η) − (y, q, 0, S, Pr0))

+ ηGrcosγ
a1 A1

((y, q,−A1, M0, η) − (y, q,−A1, S, Pr0))

+ ηGccosγ
a3 A2

((y, q,−A2, M0, η) − (y, q,−A2, Kc, Sc))

+ ηGccosγ
a3 A2

((y, q, 0, M0, η) − (y, q, 0, Kc, Sc)).

(32)

The different cases of the velocity field can be considered using Equation (31).

4.1. Motion of Plate with Constant Velocity

The solution for the motion of plate can be achieved by setting F(t) = U0H(t). We
recover the solution as

u(y, t) = (y, q, 0, M0, η) +
ηGrcosγ

a1 A1
((y, q, 0, M0, η) − (y, q, 0, S, Pr0))

+ ηGrcosγ
a1 A1

((y, q,−A1, M0, η) − (y, q,−A1, S, Pr0))

+ ηGccosγ
a3 A2

((y, q,−A2, M0, η) − (y, q,−A2, Kc, Sc))

+ ηGccosγ
a3 A2

((y, q, 0, M0, η) − (y, q, 0, Kc, Sc)).

(33)

4.2. Motion of Plate with Linear Velocity

The solution for the motion of the plate can be achieved by setting F(t) = t. We
recover the solution as

u(y, t) =
∫ t

0 (y, q, 0, M0, η) + ηGrcosγ
a1 A1

((y, q, 0, M0, η) − (y, q, 0, S, Pr0))

+ ηGrcosγ
a1 A1

((y, q,−A1, M0, η) − (y, q,−A1, S, Pr0))

+ ηGccosγ
a3 A2

((y, q,−A2, M0, η) − (y, q,−A2, Kc, Sc))

+ ηGccosγ
a3 A2

((y, q, 0, M0, η) − (y, q, 0, Kc, Sc)).

(34)

4.3. Motion of Plate with Exponential Acceleration

The solution for the motion of the plate can be achieved by setting F(t) = ewt. We
recover the solution as

u(y, t) = (y, q, w, M0, η) +
ηGrcosγ

a1 A1
((y, q, 0, M0, η) − (y, q, 0, S, Pr0))

+ ηGrcosγ
a1 A1

((y, q,−A1, M0, η) − (y, q,−A1, S, Pr0))

+ ηGccosγ
a3 A2

((y, q,−A2, M0, η) − (y, q,−A2, Kc, Sc))

+ ηGccosγ
a3 A2

((y, q, 0, M0, η) − (y, q, 0, Kc, Sc)).

(35)

4.4. Motion of Plate with Sinusoidal Oscillation

The solution for the motion of the plate can be achieved by setting F(t) = cos(wt).
We recover the solution as

u(y, t) = 1
2 ((y, q, iw, M0, η) = (y, q,−iw, M0, η))

+ ηGrcosγ
a1 A1

((y, q, 0, M0, η) = (y, q, 0, S, Pr0))

+ ηGrcosγ
a1 A1

((y, q,−A1, M0, η) = (y, q,−A1, S, Pr0))

+ ηGccosγ
a3 A2

((y, s,−A2, M0, η) = (y, q,−A2, Kc, Sc))

+ ηGccosγ
a3 A2

((y, q, 0, M0, η) = (y, q, 0, Kc, Sc)).

(36)

5. Results and Discussion

This section is devoted to the physical interpretation of the heat and mass transfer
executed on the motion of free-convection MHD Casson fluid through a limitless plate
with porous medium. The impact of thermal radiation, chemical reactions, and magnetic
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fields are also analyzed via the Laplace transformation to obtain a unique solution. The
impact of physical parameters such as Pr, M, Gc, Gr, K, λ on the energy velocity profile is
discussed with a graphical approach using MATHCAD-15.

Figure 2 investigates the domination of M on the velocity components. With an
increase in M, the velocity decreases due to force. It behaves as a drag force. By enhancing
the value of M, the Lorentz force also increases. Fluid flow on the boundary layer is slowed
down due to this force. It is perceived that the behavior of the fluid profile is effective in
the classical model.

Figure 2. Velocity profile of M with variation of time effect and other parameters such as
Pr = 12, Rd = 2, Kc = 2, Gr = 3, Gc = 5.

Figure 3 analyzes the effect of Casson parameter λ on the velocity field. The magnitude
of the velocity field enlarges with a small value of λ. For a large value of λ, the boundary
layer thickness is minimized, which helps to reduce the velocity.

Thermal and isothermal conditions represent the domination of Gr, as shown in
Figure 4. Physically, Gr shows the relation between thermal and viscous forces. For the
variation of time, the behavior of the velocities is unique. The influence of Gc is illustrated
in Figure 5. It can be noticed that the resultant velocity increases by enhancing Gc. It can
also be seen that velocity increases with an increase in time. The behaviors of Gr and Gc
on the velocity profile are the same. Figure 6 analyzes the variation of Rd on the velocity
with the help of time. The large value of radiation parameter Rd causes an increase in
fluid flow. The rate of energy transport of the fluid increases due to an increase in the
intensity of the radiation parameter and a decrease in viscosity. Due to such behavior,
the fluid moves faster and enhances the fluid velocities. The domination of chemical
reaction Kc on the concentration field is discussed in Figure 7. With a large value of Kc,
the concentration profile decreases. The positive value of Kc is analyzed as destructive,
and the negative value behaves as productive. Figure 8 displays the Nusselt number Nu
against time, varying the radiation parameter. It is clear that with a fixed value of Rd, Nu
remains constant when changing the value of t. By increasing the value of Rd, Nu drops to
smaller values, maintaining the same constant trend with increasing t. This shows that the
changing radiation parameter values decrease the convective thermal energy flow. Figure 9
shows the effect of skin friction with the variation of time. By increasing the value of time,
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skin friction drops to a smaller value. This shows that skin friction remains constant with
the effect of the variation of time. The existence of the Prandtl number may reflect the
control of the thickness of the momentum and the enlargement of thermal conductivity.
The value of Prandtl number Pr is fixed. The Prandtl number for water at 17 ◦C is 7.56 and
for air at room temperature is 0.7. The Prandtl number is Pr = 12 for non-Newtonian fluid.

Figure 3. Velocity profile of Gr with variation of time effect and other parameters such as
Pr = 12, Rd = 5, Kc = 0.8, λ = 3, Gc = 5, M = 0.75.

Figure 4. Velocity profile of λ with variation of time effect and other parameters such as
Pr = 12, Rd = 2, Kc = 2, Gr = 3, Gc = 5, M = 2.
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Figure 5. Velocity profile of Gc with variation of time effect and other parameters such as
Pr = 12, Rd = 0.5, Sc = 2, Gr = 3, λ = 2, M = 2.

Figure 6. Temperature profile of Rd with variation of time effect and other parameters such as
Pr = 12, Kc = 2, Gc = 4, Gm = 10, λ = 0.4, M = 0.4.
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Figure 7. Concentration profile of Kc with variation of time effect and other parameters such as
Pr = 12, Rd = 0.5, Gc = 2, Gm = 7, λ = 0.8, M = 3.

Figure 8. Graph displaying Nu dependence on Rd.
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Figure 9. Graph displaying kin friction dependence on time.

6. Conclusions

The exact symmetrical and closed-form solution of MHD Casson fluid with chemi-
cally reactive flow was analyzed by the Laplace transformation. Generalized boundary
conditions along the infinite plate were taken. The graphical approach was used to discuss
the influence of the dimensionless parameter on fluid velocity. Key points can be taken
from the graphical discussion:

(a) Velocity can be elevated to enhance the values of the thermal Grashof number (Gr)
and the mass Grashof number (Gc).

(b) Thermal radiation plays a significant role in the development of thermal and momen-
tum boundary layers.

(c) Velocity can be de-accelerated to enhance the values of the magnetic field (M).
(d) Temperature can be elevated to enhance the values of the radiation parameter (Rd).
(e) The concentration field can be reduced by enhancing the value of the chemical reaction

parameter Kc.
(f) The magnitude of the velocity field is enhanced with a small value of λ.
(g) The Nusselt number shows the opposite behavior with a higher value of Rd.
(h) The value of the Prandtl number Pr is 12 for non-Newtonian fluids.
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