An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA)
Abstract
:1. Introduction
2. Literature Review
3. Proposed System Model Architecture
4. Appliances Categorization
5. Algorithms
5.1. Firefly Algorithm (FA)
5.1.1. Attractiveness
5.1.2. The Movement
5.2. Lion Algorithm
- Pride Generation, which is responsible for generating solutions;
- Mating, to derive new solutions;Territorial Defense;
- Territorial Takeover, indicates finding the new best solution if the existing solution is not good.
5.3. Firefly-Lion Algorithm (FLA)
6. Results and Discussions
6.1. Energy Pricing Signals
6.1.1. TOU
6.1.2. IBR
6.1.3. CPP
6.1.4. DAP
6.2. Hourly Load
6.3. Hourly Energy Cost
6.4. Daily Average Load
6.5. Daily Average Energy Cost
6.6. Total Energy Cost
6.7. Average Waiting Time
6.8. PAR
6.9. RES
7. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ullah, I.; Khitab, Z.; Khan, M.N.; Hussain, S. An Efficient Energy Management in Office Using Bio-Inspired Energy Optimization Algorithms. Processes 2019, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Sesana, M.M.; Salvalai, G. Overview on life cycle methodologies and economic feasibility for nZEBs. Build. Environ. 2013, 67, 211–216. [Google Scholar] [CrossRef]
- Lo, C.-H.; Ansari, N. The progressive smart grid system from both power and communications aspects. IEEE Commun. Surv. Tutor. 2011, 14, 799–821. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, M.H.; Hänninen, S.; Mäki, K. Survey of smart grid concepts, architectures, and technological demonstrations worldwide. In Proceedings of the 2011 IEEE PES conference on innovative smart grid technologies Latin America (ISGT LA), Medellin, Colombia, 19–21 October 2011. [Google Scholar]
- Avci, M.; Erkoc, M.; Rahmani, A.; Asfour, S. Model predictive HVAC load control in buildings using real-time electricity pricing. Energy Build. 2013, 60, 199–209. [Google Scholar] [CrossRef]
- Jie, Y.; Zhang, G.; Kai, M. Matching supply with demand: A power control and real time pricing approach. Int. J. Electr. Power Energy Syst. 2014, 61, 111–117. [Google Scholar]
- Christopher, A.O.; Wang, L. Smart charging and appliance scheduling approaches to demand side management. Int. J. Electr. Power Energy Syst. 2014, 57, 232–240. [Google Scholar]
- Huang, Y.; Tian, H.; Wang, L. Demand response for home energy management system. Int. J. Electr. Power Energy Syst. 2015, 73, 448–455. [Google Scholar] [CrossRef]
- Ullah, I.; Hussain, I. Time-constrained nature-inspired optimization algorithms for an efficient energy management system in smart homes and buildings. Appl. Sci. 2019, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Khalid, A.; Javaid, N.; Mateen, A.; Khalid, B.; Khan, Z.A.; Qasim, U. Demand side management using hybrid bacterial foraging and genetic algorithm optimization techniques. In Proceedings of the 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Fukuoka, Japan, 6–8 July 2016; pp. 494–502. [Google Scholar]
- Ullah, I.; Hussain, I.; Singh, M. Exploiting grasshopper and cuckoo search bio-inspired optimization algorithms for industrial energy management system: Smart industries. Electronics 2020, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Li, D.; Gong, T.; Dong, M.; Gong, F.; Sun, Y. Smart community energy cost optimization taking user comfort level and renewable energy consumption rate into consideration. Processes 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, A.; Javaid, N.; Ullah, I.; Abdul, W.; Almogren, A.; Alamri, A. An intelligent hybrid heuristic scheme for smart metering based demand side management in smart homes. Energies 2017, 10, 1258. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Wu, J.; Hu, W.; Zhang, Y. An improved ABC algorithm for energy management of microgrid. Int. J. Comput. Commun. Control 2018, 13, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Hussain, I.; Uthansakul, P.; Riaz, M.; Khan, M.N.; Lloret, J. Exploiting Multi-Verse Optimization and Sine-Cosine Algorithms for Energy Management in Smart Cities. Appl. Sci. 2020, 10, 2095. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Hu, S.; Yang, J.; Xu, X.; Guan, X. Appliances scheduling via cooperative multi-swarm PSO under day-ahead prices and photovoltaic generation. Appl. Soft Comput. 2018, 62, 504–513. [Google Scholar] [CrossRef]
- Khan, N.; Riaz, M. Reliable and Secure Advanced Metering Infrastructure for Smart Grid Network. In Proceedings of the 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan, 12–13 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Shirazi, E.; Jadid, S. Optimal residential appliance scheduling under dynamic pricing scheme via HEMDAS. Energy Build. 2015, 93, 40–49. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X. Optimal scheduling of household appliances incorporating appliance coordination. Energy Procedia 2014, 61, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Manasseh, E.; Ohno, S.; Kalegele, K.; Tariq, R. Demand side management to minimize peak-to-average ratio in smart grid. In Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Kyoto, Japan, 1–2 November 2014; pp. 102–107. [Google Scholar]
- Muratori, M.; Rizzoni, G. Residential demand response: Dynamic energy management and time-varying electricity pricing. IEEE Trans. Power Syst. 2015, 31, 1108–1117. [Google Scholar] [CrossRef]
- Muratori, M.; Rizzoni, G. User satisfaction-induced demand side load management in residential buildings with user budget constraint. Appl. Energy 2017, 187, 352–366. [Google Scholar]
- Ansar, S.; Ansar, W.; Ansar, K.; Mehmood, M.H.; Raja, M.Z.U.; Javaid, N. Demand side management using meta-heuristic techniques and ToU in smart grid. In International Conference on Network-Based Information Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Pilloni, V.; Floris, A.; Meloni, A.; Atzori, L. Smart home energy management including renewable sources: A qoe-driven approach. IEEE Trans. Smart Grid 2016, 9, 2006–2018. [Google Scholar] [CrossRef] [Green Version]
- Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build. 2016, 129, 452–470. [Google Scholar] [CrossRef]
- Hussain, I.; Ullah, M.; Ullah, I.; Bibi, A.; Naeem, M.; Singh, M.; Singh, D. Optimizing energy consumption in the home energy management system via a bio-inspired dragonfly algorithm and the genetic algorithm. Electronics 2020, 9, 406. [Google Scholar] [CrossRef]
- Hussain, I.; Khan, F.; Ahmad, I.; Khan, S.; Saeed, M. Power loss reduction via distributed generation system injected in a radial feeder. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 160–168. [Google Scholar] [CrossRef]
- Dey, N.; Chaki, J.; Moraru, L.; Fong, S.; Yang, X.S. Firefly algorithm and its variants in digital image processing: A comprehensive review. In Applications of Firefly Algorithm and Its Variants; Springer: Singapore, 2020; pp. 1–28. [Google Scholar]
- Rajakumar, B.R. Lion Algorithm and Its Applications. In Frontier Applications of Nature Inspired Computation; Springer: Singapore, 2020; pp. 100–118. [Google Scholar]
- Day-Ahead Pricing (DAP), NYISO (New York Independent System Operator). Available online: http://www.energyonline.com/Data/GenericData.aspx?DataId=11&NYISO-Day-Ahead-Energy-Price (accessed on 6 August 2021).
Time Sessions | Serial No. | Load Units | Power Rating () (KW) | Starting Time () | Finishing Time () | Time-Span () (h) | Average LOT (h) |
---|---|---|---|---|---|---|---|
1. | Offices | 26.3 | 08 | 16 | 08 | 05 | |
2. | Labs | 20.5 | 08 | 16 | 08 | 05 | |
3. | Classrooms | 13.1 | 08 | 16 | 08 | 04 | |
Morning | 4. | Library | 4.96 | 08 | 16 | 08 | 06 |
session | 5. | Main hall | 9.32 | 08 | 16 | 08 | 02 |
6. | Wash rooms | 6.3 | 08 | 16 | 08 | 06 | |
7. | Canteen | 10.4 | 08 | 16 | 08 | 06 | |
8. | Staff Hostel | 32.3 | 16 | 08 | 16 | 12 | |
Evening | 9. | Student Hostel | 33.4 | 16 | 08 | 16 | 14 |
session | 10. | Search lights | 9.82 | 16 | 08 | 16 | 10 |
11. | Canteen | 11.3 | 16 | 08 | 16 | 12 |
S. No. | Parameter | Value |
---|---|---|
1 | Randomness Parameter () | 0.2 |
2 | Attractiveness () | 2 |
3 | Absorption coefficient () | 1 |
S. No. | Parameter | Value |
---|---|---|
1 | n | 11 |
2 | Maturity age () | 5 |
3 | Female max. breeding strength () | 5 |
4 | Max. generation () | 100 |
5 | Crossover prob. () | 0.2, 0.6 |
6 | Mutation prob. () | 0.5 |
Techniques | Cost ($) | %Cost Reduction | Waiting Time (h) | PAR | %PAR Reduction |
---|---|---|---|---|---|
Un-Schedule | 16,328.24 | – | – | 1.384 | – |
FA Scheduled | 15,419.37 | 5.566% | 7.68 | 1.249 | 9.754% |
LA Scheduled | 15,748.91 | 3.548% | 8.26 | 1.228 | 11.271% |
FLA Scheduled | 14,498.14 | 11.208% | 4.27 | 1.247 | 9.898% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, H.; Khan, M.; Hussain, I.; Ullah, I.; Uthansakul, P.; Khan, N. An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA). Energies 2021, 14, 6028. https://doi.org/10.3390/en14196028
Ullah H, Khan M, Hussain I, Ullah I, Uthansakul P, Khan N. An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA). Energies. 2021; 14(19):6028. https://doi.org/10.3390/en14196028
Chicago/Turabian StyleUllah, Haneef, Murad Khan, Irshad Hussain, Ibrar Ullah, Peerapong Uthansakul, and Naeem Khan. 2021. "An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA)" Energies 14, no. 19: 6028. https://doi.org/10.3390/en14196028
APA StyleUllah, H., Khan, M., Hussain, I., Ullah, I., Uthansakul, P., & Khan, N. (2021). An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA). Energies, 14(19), 6028. https://doi.org/10.3390/en14196028