
Article

An Optimal Energy Management System for University
Campus Using the Hybrid Firefly Lion Algorithm (FLA)

Haneef Ullah 1, Murad Khan 1, Irshad Hussain 1,* , Ibrar Ullah 1 , Peerapong Uthansakul 2,*
and Naeem Khan 1

����������
�������

Citation: Ullah, H.; Khan, M.;

Hussain, I.; Ullah, I.; Uthansakul, P.;

Khan, N. An Optimal Energy

Management System for University

Campus Using the Hybrid Firefly

Lion Algorithm (FLA). Energies 2021,

14, 6028. https://doi.org/

10.3390/en14196028

Academic Editor: José Antonio

Domínguez-Navarro

Received: 13 August 2021

Accepted: 17 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical & Computer Engineering, University of Engineering and Technology,
Peshawar 25000, Pakistan; haneefullah1998@gmail.com (H.U.); muradkhanmsk@gmail.com (M.K.);
ibrarullah@uetpeshawar.edu.pk (I.U.); nkhan@uetpeshawar.edu.pk (N.K.)

2 School of Telecommunication Engineering, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand

* Correspondence: ee.irshad@gmail.com (I.H.); uthansakul@sut.ac.th (P.U.)

Abstract: As the world population and its dependency on energy is growing exponentially day by
day, the existing energy generating resources are not enough to fulfill their needs. In the conventional
grid system, most of the generated energy is wasted because of improper demand side management
(DSM). This leads to a difficulty in keeping the equilibrium between the user need and electric power
production. To overcome these difficulties, smart grid (SG) is introduced, which is composed of the
integration of two-way communication between the user and utility. To utilize the existing energy
resources in a better way, SG is the best option since a large portion of the generated energy is
consumed by the educational institutes. Such institutes also need un-interrupted power supply at
the lowest cost. Therefore, in this paper, we have taken a university campus load. We have not only
applied two bio-inspired heuristic algorithms for energy scheduling—namely, the Firefly Algorithm
(FA) and the Lion Algorithm (LA)—but also proposed a hybrid version, FLA, for more optimal
results. Our main objectives are a reduction in both, that is, the cost of energy and the waiting time of
consumers or end users. For this purpose, in our proposed model, we have divided all appliances
into two categories—shiftable appliances and non-shiftable appliances. Shiftable appliances are
feasible to be used in any of the time slots and can be planned according to the day-ahead pricing
signal (DAP), provided by the utility, while non-shiftable appliances can be used for a specified
duration and cannot be planned with the respective DAP signal. So, we have scheduled shiftable
appliances only. We have also used renewable energy sources (RES) for achieving maximum end user
benefits. The simulation results show that our proposed hybrid algorithm, FLA, has reduced the cost
excellently. We have also taken into consideration the consumers’ waiting times, due to scheduling
of appliances.

Keywords: DAP; DSM; demand response; energy management controller (EMC); firefly algorithm
(FA); FLA; lion algorithm (LA); length of operational time (LOT); PAR; RES; smart grid; traditional
electric power grid

1. Introduction

Due to the recent advancements in technology, almost every walk of life is becoming
altered by the technological revolution. Due to these fast paced advancements, people are
reshaping their lifestyles as a result of utility providers, and industrialists and researchers
are focused on making the customer’s life easy and more comfortable. Most researchers
and innovators are working to find new ways to improve the performance, reliability,
efficiency, and comfort of the existing system, but all these attributes of a system have
to be cost-effective in terms of optimized energy consumption. Energy optimization is a
very important research area in many engineering fields. In this modern world, electrical
energy is used in our homes (lights, air-conditioners, freezers, etc.), offices (computer, fan,
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lights, etc.), factories (heavy machines), most businesses (trade, company, etc.), universities,
schools, colleges, laboratories, and hospitals, and so forth. It is also important to remember
that energy consumption rises day by day. New houses, power consumption centers such as
new factories, computers, machinery, and vehicles are manufactured every day. However,
the energy-generating resources cannot be increased by the same proportion. All energy
generating stations provide only a given quantity of energy for a limited time duration.
Because of the intensification of energy demand, one cannot alter the whole structure.
Instead, all power-consuming appliances must be supplied with electricity. Educational
institutes are the most important energy consumers, and need an uninterrupted power
supply. They also participate in the increase of carbon emissions [1]. The excessive
and wasteful usage of electrical energy brings ecological problems such as economic
progress, toxic emissions, and global warming to the forefront. Therefore, we must turn
the traditional electric power grid (TEPG) into the smart grid (SG).

The integration of information and communication technology (ICT) into the TEPG is
known as SG [2]. Controlling the system, information management and cyber protection
are some of the advanced functionalities of SG. In TEPG, the energy flow is unidirectional
while in the Smart Grid, the energy flows bi-directionally [3]. This enables consumers to
take energy from the utility in times of need and supply it back to the utility provider
when extra energy is generated at the consumer end. SG is a complex system that includes
numerous smart devices; however, it provides beneficial services to both the consumer and
the utility provider.

To minimize electricity consumption, reduce electricity bills, PAR, and the waiting
time for the comfort of consumers are the main objectives of demand-side management
(DSM). DSM is a service provided by SG that operates appliances as per the pricing signal
of the utility. DSM has several techniques that help with peak cutting, load ever-changing,
planned preservation, adjustable load ever-changing, and planned load progress, which
resolves the energy optimization problem. Such techniques help with shifting the load
from ON-peak hours to the Off-peak hours [4]. DSM is based on ‘Energy Management
(EM)’ and ‘Demand Response (DR). DR is the economic tactic, where the utility providers
force their customers to decrease or change their energy usage from expensive hours to
inexpensive hours. DSM mainly focuses on the usage of smart energy resources. DR uses
two methods: Incentive-based [5] and price-based [6]. In the incentive-based method,
consumers’ devices are interrupted to an ON/Off state by sending a quick note to the
smart house (SH) or Smart Building (SB). The consumers’ devices are turned OFF in Peak
Hours and after passing this phase the devices are switched ON in the Off-Peak hours
when they are needed. This decreases the PAR of corporations, which is the key feature
of the SG. During inexpensive hours or off-peak hours, the customer is encouraged to
use their devices in the market-based program. As a result, customers could easily plan
their use in inexpensive hours, which helps them to minimize their per-unit price and,
as a result, there is a substantial reduction in their electricity bill. The Smart Grid does
this all bidirectionally by exploiting its various components such as smart devices, that
is, Smart Meters (SM), Energy Management Controllers (EMC), Self-Operated Devices
(SODs), and secure communication infrastructure.

EMC gathers information regarding all connected users, then sets a proper energy
usage plan as per the given pricing signal. SM transmits the pricing signal from utility
to EMC, at the same time SM gathers the information about energy consumption of cus-
tomers and sends these data to the utility provider. The communication of SM with the
company is accomplished via radio communication links, for example, WiMAX, Bluetooth,
ZigBee, WiFi, GSM, GPRS, or through Power Line Carrier Communication (PLCC) [3].
It enables the EMC to plan the operation of Smart Homes and Self Operated Devices
(SODs) in an efficient and optimized way by exploiting various energy optimization algo-
rithms. The working principle of some algorithms is based on mathematical models, while
some other algorithms are nature-inspired and some are bio-inspired. These algorithms
help researchers to find an optimized solution to the desired problem, modeled by the
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experts/researchers. In the last twenty years, these bio-inspired optimization algorithms
have played a major role in solving many optimization problems, due to which they have
become very popular. The following section provides a comprehensive literature review.
Most researchers have focused only on the minimization of energy cost (electricity bill of
the consumer), by scheduling appliances in the residential, commercial or industrial sectors.
Usually, they have ignored the consumer frustration due to the scheduling of the appliances.
When electricity price decreases, waiting time will increase. Therefore, an adoptive nature
algorithm is needed to work for both types of consumers, that is, some consumers want
to reduce their electricity bill, while others’ priority is the minimization of their waiting
time. That is why a hybrid algorithm can provide choice to the consumer. Secondly, it
combines the benefits of both algorithms in a single platform. Therefore, in this work, we
have proposed a novel hybrid algorithm, that is, a combination of FA and LA—namely,
FLA—to achieve the advantages of both parent algorithms.

The rest of the paper is organized as follows. The literature review is presented in
Section 2. The proposed system model architecture is shown in Section 3. Appliances’
categorization and their specifications are tabulated in Section 4. Section 5 discusses the
proposed algorithms, that is, FA, LA and FLA (hybridization of FA and LA). Section 6
presents the simulation results, that is, Pricing Signal, Hourly Load, Hourly electricity cost,
Daily average load, Daily average cost, Total energy cost, Average waiting time, PAR and
integration of RES. The conclusions and future work are presented in the last section of the
paper.

2. Literature Review

Much research is carried out in the area of energy optimization in smart grids. Different
algorithms are used for this purpose. Here, we mention a comprehensive study of existing
techniques, along with their achievements and shortcomings.

In [1], the authors used the bacterial foraging algorithm (BFA) and the grass-hopper
optimization algorithm (GOA). They reduced the electricity cost by 34.69% and 37.47% and
PAR by 56.20% and 20.87% using GOA and BFA scheduling, respectively, for a single office.
In [7], the author mixed integer non-linear programming to reduce PAR and electricity bills.
With this method they have reduced the cost, but they do not give any importance to PAR
reduction. In [8], the author discussed cost reduction and the storage of energy resources.
They enable the end users to store extra energy during Off-peak hours and sell them to the
utility provider during ON-peak hours, which is a very beneficial technique for both users
and utility providers.

In [9], the author used two nature-inspired algorithms, named the Moth flame opti-
mization algorithm (MFO) and the Genetic algorithm (GA). They reduced the PAR and
electricity cost to a greater extent but the waiting time results are not good in the case of
the MFO algorithm, while in the case of GA algorithm they reduced the waiting time as
well as PAR, but the electricity cost increased in the simulation results. Similarly in [10],
the author used a hybrid technique, BFA and GA, for energy optimization. When two or
more algorithms are merged into a single one, it is called a hybrid algorithm. The simula-
tion results of this algorithm show that the cost and PAR achieved by using a hybrid is less
as compared to GA and BFA. While in case of GA and BFA, the cost achieved through BFA
is low compared to GA while on the other hand, the PAR of BFA is greater as compared
to GA. Thus, the cost and PAR achieved through the hybrid approach is far better and,
similarly, the user waiting time response through the hybrid approach is also good.

In [11] the author used the cuckoo search algorithm (CSA) and the grasshopper opti-
mization algorithm (GOA) to reduce the cost and PAR for the optimal usage of industry
machines. They selected a woollen mill and proposed a model and conducted schedul-
ing for the same model. Their cost and PAR using GOA is good as compared to CSA,
but the waiting time for GOA is very high as compared to CSA. In [12], the authors used
mechanisms to balance the load in commercial, residential and industrial areas. In DSM,
they showed a comparison of electricity utilising GA against not using GA. They lowered
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peak-hour electricity use by employing GA-based DSM. They have, however, overlooked
PAR and end-user comfort.

For most of the optimization problems the cuckoo search algorithm (CSA) is quite
effective as a result of its generic and durable nature. The cuckoo search algorithm out-
performs the genetic algorithm and the particle swarm optimization technique (PSO).
In [13], the author used TLBO, Linear programming, the TLBO algorithm and GA for the
scheduling of appliances to reduce PAR and electricity costs. In [14], the author used the
swarm optimization algorithm and an improved adaptive evolutionary algorithm. They
worked on the optimal economic dispatch solution for a micro grid by using the improved
artificial bee colony optimization.

In [15], the authors used the multi-verse optimization (MVO) algorithm and sine-
cosine algorithm (SCA), and have extracted better results in terms of low PAR and electricity
cost. The authors maintained a desired threshold level between the cost of electricity
and the amount of time users must wait. The author of [16] employed a cooperative
multi-swarm particle swarm optimization (PSO) technique to lower the PAR, but they
overlooked the waiting time for appliances as well as the cost of electricity. The authors
of [17] discussed the importance of smart grids in the future and highlighted some of
the optimization techniques that could be used to solve various optimization problems,
such as GA, Memetic Algorithm, PSO, ACO Algorithm, and Artificial Neural Networks.
In [18], with the objective of achieving lower electricity costs and PAR, the authors used an
autonomous and optimal domestic energy consumption scheduling technique. For various
load scenarios, their simulation results demonstrate a considerable reduction in electricity
costs. Both users and utility providers benefit from the implementation of their proposed
methods. In [19], the author has taken a model of seven different appliances and made
a scheduling mechanism for it by using GA. They divided the load into three categories:
flexible, inflexible, and nighttime loads. Their simulation results reveal a cost reduction of
8% and a reduction in energy use of 2%.

DSM is a crucial function in a smart grid because it allows end-users to change their
energy consumption in a variety of ways. In [20], in order to reduce PAR and electricity,
a demand side management strategy was used; they created energy for users by employing
RES or distribution generators. They used to charge their storage devices during low-cost
hours and then use them during peak-cost hours. As a result, both the cost of electricity
and the PAR were reduced.

In [21], the author used a demand response technique. Demand response is actually a
method of shifting load or using appliances within a beneficial time duration, meaning in
off-peak hours, so that the consumer would not suffer from ON-peak hours. The author of
this research demonstrated that, by moving the load, unexpected peaks might be noticed at
off-peak hours. They used multi-CPP (Critical Peak Pricing) and multi-TOU (Time of Use
Pricing) pricing schemes, as well as DAP (Day Ahead Pricing) signal concepts, to analyse
this later peak creation. In [22], the author used a demand side load management technique
building in such a way as to increase the user satisfaction at a low cost. The author used
the GA-based optimization technique to achieve their objective.

In [23], the author shifted the load from ON-peak hours to OFF-peak hours and used
different meta-heuristic techniques, such as EDE, HSA, BFA, and GA. They achieved lower
electricity costs and low PAR, but ignored user waiting time. In [24] the author used
two algorithms, QoE-aware Cost Saving Appliance Scheduling (Q-CSAS) and QoE-aware
Renewable Source Power Allocation (Q-RSPA), to reduce the electricity cost. Simulation
results showed that the average energy cost savings using the proposed algorithms are
22% when there were no RES installed, and they increased it up-to 30% using RES.

In [25], the author used three heuristic algorithms, the GA, BPSO and ACO algorithms,
to reduce electricity cost, PAR and user waiting time. Simulation results show that the
GA based energy management controller performed very much more efficiently than the
BPSO and ACO based energy management controller for the reduction of electricity cost,
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PAR and user waiting time. In [26], the author used a hybrid GA and PSO for energy
management, and to minimize the user waiting time in smart homes.

3. Proposed System Model Architecture

DSM is responsible for the effective performance of SG. Through the DSM, we can
manage our energy consumption and all the other activities that may take place on the
customer side. In this section, we propose a model that will work on the scheduling of
appliances for a university campus to achieve beneficial results by optimal scheduling
of the appliances. The load is divided into two sessions—morning session and evening
session. We have further distributed morning session load into classrooms, offices, labs,
the main hall, staff hostel, students-hostel, canteen and search light as shown in Table 1. We
considered that the campus is receiving a DAP signal from the utility provider, according to
which we have to schedule our appliances to achieve our desired objectives. As discussed
earlier, we divided the campus load into different blocks, as load units. These blocks have
some non-shiftable appliances such as fans, tube lights, energy savers, exhaust fans, air
conditions. All of them can be used in a specified time slot. Similarly, we have some
shiftable appliances such as geysers, lab equipment, water pumps, water coolers, and
so forth. We can shift all these appliances to another time slot if needed, to help in the
reduction of PAR, cost and customer waiting time. This scheduling is beneficial for both
consumer and utility provider. Smart meters are placed in each apartment to compute
each hour’s power consumption. The utility provider shares the price information with the
users for the required energy consumption.

In order to meet our objectives, we have distributed our 24-h load into a morning
session and an evening session. The morning session is 8 h from 8 am to 4 pm, and the
evening session is 16 h from 4 pm to 8 am (next day morning). Each hour represents a single
time slot, that is, eight slots and 16 slots respectively. Our proposed system architecture is
shown in Figure 1.

Table 1. Campus load units and their specifications.

Time Sessions Serial
No.

Load Units Power Rating
(λs) (KW)

Starting Time
(Ts)

Finishing
Time (Tf )

Time-Span
(Tf − Ts) (h)

Average
LOT (h)

1. Offices 26.3 08 16 08 05
2. Labs 20.5 08 16 08 05
3. Classrooms 13.1 08 16 08 04

Morning 4. Library 4.96 08 16 08 06
session 5. Main hall 9.32 08 16 08 02

6. Wash rooms 6.3 08 16 08 06
7. Canteen 10.4 08 16 08 06

8. Staff Hostel 32.3 16 08 16 12
Evening 9. Student Hostel 33.4 16 08 16 14
session 10. Search lights 9.82 16 08 16 10

11. Canteen 11.3 16 08 16 12
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Figure 1. System Model Architecture.

4. Appliances Categorization

We have categorized our load into two groups, Group A and Group B. We call
the group “A” appliances shiftable appliances and group “B” appliances non-shiftable
appliances. Let An represents all the appliances so that,

An = As + Ans (1)

where, “As” represents shiftable appliances and “Ans” represents non-shiftable appliances.
We can schedule all these appliances in the 24-h time duration as follows;

tεT, ∀, T = {t1, t2, t3 . . . . . . . . . . . . . . . . . . . . . .t24}. (2)

Table 1 depicts the campus load units, their power ratings, starting timings, finishing
timings and the average length of operations times (LOTs).

5. Algorithms
5.1. Firefly Algorithm (FA)

The firefly is an insect that mostly lives in humid environments [27]. They generate
limited intensity flashing lights of colors such as green, yellow and pale-red. They use their
unique flashing light pattern for the purpose of communication. As a defensive cautionary
mechanism, they use scent to lure their companions and potential prey. This flashing light
mating pattern is used by some female species to track down other species. There are
more than 2000 different species of fireflies in this biosphere. FA is used for the solution
of optimization problems, in various fields, as FA generates precise and accurate results
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with respect to time and optimality [28]. The two main features of FA are attractiveness
and movement.

5.1.1. Attractiveness

In FA, the attractiveness depends upon the intensity of light and the distance between
two fireflies. The attractiveness of two fireflies, that is, fireflies “i” and “j”, is related to the
intensity of light and is inversely proportional to the square of their distance. i.e.,

I(I0, γ, dij) =
I0

d2
ij

(3)

where, Io shows the intensity of the flashing light at the origin and dij represents the
distance between firefly i and firefly j. The fireflies’ flashing light intensity is inversely
proportional to the distance between them and depends on the absorption of the medium
(γ). So the above equation can be re-written as;

I(I0, γ, dij) = I0eγd2
ij (4)

5.1.2. The Movement

The distance between any two fireflies i and j in 2-D can be found as;

dij =
√
(xi − xj)2 + (yi − yj)2 (5)

The movement of a firefly “i” towards a more attractive firefly “j” can be found using the
following equation;

xi = xi + β0e−γd2
ij(xj − xi) + α(rand− 1

2
) (6)

The term β0e−γd2
ij(xj − xi) in the above equation shows the attraction while the term

α(rand− 1
2 ) is known as the randomization term with a randomization parameter α, while

rand is known as the random number generator.

5.2. Lion Algorithm

Unlike other felines, like cats, leopards, and so forth, lions have interesting behavior to
keep the animals strong in every generation. There is a term used for lions’ social systems,
and that is pride, in which the females live and give birth to their off-springs. A cub needs
2–4 years to become mature. In between these 2–4 years, nomadic lions may try to take a
pride, which is called a territorial defense. To defend the territory a war may start between
the territorial lions and the nomadic lions. When the nomadic lion defeats the territorial
lion, the nomadic lion kills the territorial lion or takes him out of the pride, and the nomadic
lion becomes the territorial lion by killing his cubs and taking his female and using her to
give birth to his offspring. Once the cubs of the pride become mature and stronger enough
to defeat the territorial lion, they attack and take their pride back. On the basis of this
nature, the Lion algorithm is composed of four major components. These are:
Pride Generation, which is responsible for generating solutions;
Mating, to derive new solutions;
Territorial Defense;
Territorial Takeover, indicates finding the new best solution if the existing solution is
not good.

The searching procedure of the lion algorithm follows the basic structure of an algo-
rithm. Consider an objective function:

argmin f (c1, c2, ......., cn); n ≥ 1 (7)



Energies 2021, 14, 6028 8 of 16

where
ci ∈ (cmin

i , cmax
i ). (8)

To indicate a search procedure, we have to generate a pride. It consists of Cmale and
C f emale, with the structure:

Cmale = [cmale
1 , cmale

2 , ......, cmale
L ]andC f emale = [c f emale

1 , c f emale
2 , ......, c f emale

L ] (9)

where “L” defines the length of the solution vector.
The strength of the entire pride can be calculated as:

f (Cpride) =
1

2(1 + ||CmCubs||)
( f (Cmale) + f (C f emale) +

Agemat

age(cub) + 1

||XmCubs||

∑
b=1

f (CmCubs
b ) + f (C f Cubs

b )

||XmCubs||
) (10)

where ( f (Cmale
b ) and ( f (C f emale

b ) show the strength of male and female cubs respectively.
While the number of male cubs in the pride is shown as ||CmCubs||, the Agemat shows the
maturity age for mating.

5.3. Firefly-Lion Algorithm (FLA)

Hybrid algorithms are made up of two or more algorithms that work together and
complement one another to create a profitable synergy. Hybridization tries to utilize the
benefits of each method. The Firefly Algorithm is one the most simple, easy to implement
and efficient bio-inspired meta-heuristic algorithms. On the other hand, researchers have
put it in the slow convergence rate algorithms group. It also usually is trapped in the
local optimum, particularly in multi-model operations. However, it is very appropriate
for the parallel applications. LA is one of the bio-inspired meta-heuristic algorithms, used
for optimization problems, especially in multi-model operations [29]. Therefore, making
a hybrid version of both these algorithms, namely, FLA, to obtain the benefits of both,
while evading their shortcomings, is currently needed. FLA not only handles multi-mode
operations but also has a very short convergence time and is easy to implement. Therefore,
In this paper, we have studied the nature of both these algorithms and introduced the
combination of firefly and lion algorithms, namely, the Firefly Lion algorithm (FLA). We
have achieved better results through the hybrid approach. In FLA, first, we applied FA
for finding the local optimum solution. Then, we applied LA on these local best (lbest).
Meanwhile, we generated random data as well, (as done at the start also), and compared
the local best generated by FA with this randomly generated data. We have the condition
that if lbest is less than the generated data values, then it is considered to be lbest, otherwise
LA starts its own operation and finds its own lbest. By moving forward, the global best gbest
is found.

6. Results and Discussions

In this section, the MATLAB simulation results are discussed. We have extracted better
results from FLA and compared them with its variants FA and LA. The PAR reduction, cost
minimization and reduction in the average waiting time for the user are the main focus of
this work.

6.1. Energy Pricing Signals

Different energy pricing schemes are used in the literature to give energy costs either
on a daily basis or an hourly basis such as time of use (TOU), inclined block rate (IBR),
critical peak pricing (CPP) and day ahead pricing (DAP). We have used the DAP signal
depicted in Figure 2d, reproduced from [30], for manipulation of the energy cost.

6.1.1. TOU

TOU is the energy pricing scheme that is used for a wide block of hours as shown in
Figure 2a.
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Figure 2. (Different Pricing Signals used in the literature: (a) ToU, (b) IBR, (c) CPP and (d) DAP.

6.1.2. IBR

IBR is the electricity pricing model which divides the pricing scheme into several
steps. The first step has a low cost and then the cost increases or decreases step wise as
shown in Figure 2b.
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6.1.3. CPP

CPP is the electricity pricing signal which shows the high electricity rate at a specific
peak duration as shown in Figure 2c.

6.1.4. DAP

DAP is the hourly consumption rate of electricity. It is regulated by the utility provider
in two parts—base bill and hourly prices, as shown in Figure 2d.

6.2. Hourly Load

Figure 3 depicts the hourly load distribution for the unscheduled and scheduled with
FA, LA and FLA algorithms. It is clear in the Figure that FLA excellently distributes the
load on 24 h, while avoiding the peak hours’ higher energy cost.
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Figure 3. Hourly load distribution graph.

6.3. Hourly Energy Cost

Figure 4 shows the hourly energy cost distribution for the unscheduled and scheduled
with FA, LA and FLA algorithms. As compared to its variants algorithms, FA and LA, FLA
reduced the hourly cost excellently.
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Figure 4. Hourly energy cost distribution.

6.4. Daily Average Load

The daily average load for the unscheduled and scheduled with FA, LA and FLA
algorithm is shown in Figure 5. The Figure clearly shows that the daily average load,
scheduled by all algorithms, remained the same.
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Figure 5. The daily average load.

6.5. Daily Average Energy Cost

The daily average energy cost for the unscheduled and scheduled with FA, LA and
FLA algorithm is shown in Figure 6. It can be observed that, due to the scheduling of the
load, the cost is reduced.
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Figure 6. The daily average energy cost.

6.6. Total Energy Cost

The unscheduled and scheduled energy costs with FA, LA and FLA algorithms are
shown in Figure 7. The simulation results show that the electricity cost of FLA is much
less,as compared to the unscheduled load cost and the other Bio-Inspired algorithms.



Energies 2021, 14, 6028 12 of 16

Un�Sche FA Sch LA Sch FLA Sch
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

T
o
ta

l 
C

o
s
t 
( 

$
 )

Figure 7. Total energy cost.

6.7. Average Waiting Time

Waiting time plays an important role in the scheduling of appliances. Usually, when
we reduce the cost, as a result, waiting time increases. A user cannot use an appliance
when they desire, and has to wait for their scheduled time. Our simulation results show
that consumer waiting time is reduced to a greater extent, which was our main objective.
Figure 8 shows the average waiting time for scheduled appliances with FA, LA and
FLA algorithms.
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Figure 8. Average Waiting Time.

6.8. PAR

Not only average waiting time, but also PAR plays an important role in the optimal
scheduling of smart appliances. During ON-Peak hours, high peaks of load are produced,
due to which the utility provider uses extra generating sources, due to which per unit cost
increases. Therefore, most researchers try to reduce PAR to find an economical solution
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for the user. Figure 9 shows a comparison between the unscheduled and scheduled with
FA, LA and FLA algorithms. The simulation results show that we have not achieved better
results in the case of PAR reduction, because of the cost and waiting time reductions.
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Figure 9. Peak to Average power Ratio (PAR).

6.9. RES

The use of renewable energy resources (RES) is the need of the day. It not only reduces
our daily load demand, but also, the extra generated energy can be given back to the grid
for the peak hours’ high energy demand. So, PAR can also be reduced, and hence we can
reduce the electricity cost to a greater extent. Figure 10 shows the estimated day-time solar
energy generation, while Figure 11 depicts the unscheduled load without RES and with
RES. It is clear from the figure that the load demand is not only fulfilled, but the extra
generated energy is either stored or given back to the grid, using the two-way energy meter.
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Figure 10. The estimated day-time solar energy generation.
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Figure 11. Un-scheduled load with and without RES.

Tables 2 and 3 depict the control parameters for FA and LA, respectively.

Table 2. Control parameters for Firefly Algorithm.

S. No. Parameter Value

1 Randomness Parameter
(α)

0.2

2 Attractiveness (β) 2
3 Absorption coefficient (γ) 1

Table 3. Control parameters for Lion’s Algorithm.

S. No. Parameter Value

1 n 11
2 Maturity age (AgeMat) 5
3 Female max. breeding strength

(BStrength)
5

4 Max. generation (genmax) 100
5 Crossover prob. (PCrossover) 0.2, 0.6
6 Mutation prob. (PMutation) 0.5

Table 4 summarizes the performance of the proposed FLA algorithm in comparison to
the unscheduled-load and the load scheduled with FA and LA algorithms.

Table 4. Comparison of FLA with unscheduled load and the load scheduled with FA and LA
algorithms.

Techniques Cost ($) %Cost Re-
duction

Waiting
Time (h)

PAR %PAR
Reduc-
tion

Un- Schedule 16,328.24 – – 1.384 –
FA Scheduled 15,419.37 5.566% 7.68 1.249 9.754%
LA Scheduled 15,748.91 3.548% 8.26 1.228 11.271%
FLA Scheduled 14,498.14 11.208% 4.27 1.247 9.898%
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7. Conclusions and Future Work

In this paper, we have applied two bio-inspired algorithms, the Firefly Algorithm (FA)
and the Lion Algorithm (LA), and proposed the hybrid version of these two algorithms—
called the Firefly-Lion Algorithm (FLA)—for University campus appliances to extract
beneficial results. We have compared their results in two different timing sessions, that
is, a morning-session and an evening-session. We have taken the starting and finishing
times for different appliances and have different power ratings and LOTs for different
appliances. We have conducted our simulations using the day ahead pricing (DAP) signal.
Our results show that we have reduced the total energy cost to a great extent. While
there is always a bargain between electricity cost and waiting time—that is, when cost
is decreased, the waiting time increases—in our FLA, we have reduced the cost without
affecting the waiting time for the consumer. The cost and waiting time are very much
lower as compared to the other algorithms used for comparison. In future, more efficient
bio-inspired algorithms will be explored and hybridized to achieve better results.
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