# An Assessment Framework for Solar Cell Material Based on a Modified Fuzzy DEMATEL Approach

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Assessment Criteria Relevant to the Solar Cell Industry

#### 2.1. Market Benefit

#### 2.2. Technological Ability

#### 2.3. Government Policy

## 3. Research Method

## 4. Research Results and Discussion

**Step 1: Calculate the arithmetic mean matrix**

**Step 2: Normalizing the casual fuzzy matrix**

**Step 3: Establish and analyze the casual model**

**Step 4: Utilize the causal matrix**

## 5. Conclusions and Remarks

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Miles, R.W.; Hynes, K.M.; Forbes, I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Charact. Mater.
**2005**, 51, 1–42. [Google Scholar] [CrossRef] - Schimper, H.J.; Kollonitsch, Z.; Möller, K.; Seidel, U.; Bloeck, U.; Schwarzburg, K.; Willig, F.; Hannappel, T. Material studies regarding InP-based high-efficiency solar cells. J. Cryst. Growth.
**2006**, 287, 642–646. [Google Scholar] [CrossRef] - Juang, W.S. A Practical Anonymous Payment Scheme for Electronic Commerce. Comput. Math. Appl.
**2003**, 46, 1787–1798. [Google Scholar] [CrossRef] - Kebede, K.Y.; Mitsufuji, T. Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia. Technol. Forecast. Soc. Chang.
**2017**, 114, 242–253. [Google Scholar] [CrossRef] - Wu, W.W.; Lee, Y.T. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Syst. Appl.
**2007**, 32, 499–507. [Google Scholar] [CrossRef] - Kuo, M.S. Optimal location selection for an international distribution center by using a new hybrid method. Expert Syst. Appl.
**2011**, 38, 7208–7221. [Google Scholar] [CrossRef] - Hille, E.; Althammer, W.; Diederich, H. Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter. Technol. Forecast. Soc. Chang.
**2020**, 153, 119. [Google Scholar] [CrossRef] [Green Version] - Li, H.; Wang, W.; Fan, L.; Li, Q.; Chen, X. A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Appl. Soft Comput.
**2020**, 91, 106207. [Google Scholar] [CrossRef] - Yu, X.B.; Lu, Y.Q.; Yu, X. Evaluating Multiobjective Evolutionary Algorithms Using MCDM Methods. Math. Probl. Eng.
**2018**, 2018, 9751783. [Google Scholar] [CrossRef] [Green Version] - Ding, X.F.; Liu, H.C. A 2-dimension uncertain linguistic DEMATEL method for identifying critical success factors in emergency management. Appl. Soft Comput.
**2018**, 71, 386–395. [Google Scholar] [CrossRef] - Jiang, S.; Shi, H.; Lin, W.; Liu, H.C. A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Appl. Soft Comput.
**2020**, 86, 105900. [Google Scholar] [CrossRef] - Chen, C.H.; Tzeng, G.H. Creating the aspired intelligent assessment systems for teaching materials. Expert Syst. Appl.
**2011**, 38, 12168–12179. [Google Scholar] [CrossRef] - Chen, F.H.; Hsu, T.S.; Tzeng, G.H. A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP. Int. J. Hosp. Manag.
**2011**, 30, 908–932. [Google Scholar] [CrossRef] - Rostamzadeh, R.; Govindan, K.; Esmaeili, A.; Sabaghi, M. Application of fuzzy VIKOR for evaluation of green supply chain management practices. Ecol. Indic.
**2015**, 49, 188–203. [Google Scholar] [CrossRef] - Wang, F.K.; Hsu, C.H.; Tzeng, G.H. Applying a Hybrid MCDM Model for Six Sigma Project Selection. Math. Probl. Eng.
**2014**, 2014, 730934. [Google Scholar] [CrossRef] - Hu, H.Y.; Chiu, S.I.; Cheng, C.C.; Yen, T.M. Applying the IPA and DEMATEL models to improve the order-winner criteria: A case study of Taiwan’s network communication equipment manufacturing industry. Expert Syst. Appl.
**2011**, 38, 9674–9683. [Google Scholar] [CrossRef] - Ho, W.R.J.; Tsai, C.L.; Tzeng, G.H.; Fang, S.K. Combined DEMATEL technique with a novel MCDM model for exploring portfolio selection based on CAPM. Expert Syst. Appl.
**2011**, 38, 16–25. [Google Scholar] - Govindan, K.; Paam, P.; Abtahi, A. A fuzzy multi-objective optimization model for sustainable reverse logistics network design. Ecol. Indic.
**2016**, 67, 753–768. [Google Scholar] [CrossRef] - Chen, Z. Evaluating Sustainable Liveable City via Multi-MCDM and Hopfield Neural Network. Math. Probl. Eng.
**2020**, 4189527. [Google Scholar] [CrossRef] [Green Version] - Kalbar, P.P.; Birkved, M.; Karmakar, S.; Nygaard, S.E.; Hauschild, M. Can carbon footprint serve as proxy of the environmental burden from urban consumption patterns. Ecol. Indic.
**2017**, 74, 109–118. [Google Scholar] [CrossRef] [Green Version] - Chen, W.C.; Lin, Y.F.; Liu, K.P.; Chang, H.P.; Wang, L.Y.; Tai, P.H. A Complete MCDM Model for NPD Performance Assessment in an LED-Based Lighting Plant Factory. Math. Probl. Eng.
**2018**, 2018, 7049208. [Google Scholar] [CrossRef] [Green Version] - Charters, W.W.S. Solar energy: Current status and future prospects. Energy Policy
**1991**, 19, 738–741. [Google Scholar] [CrossRef] - Malhotra, A.; Schmidt, T.S.; Huenteler, J. The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies. Technol. Forecast. Soc. Chang.
**2019**, 146, 464–487. [Google Scholar] [CrossRef] - Sovacool, B.K.; D’Agostino, A.L.; Bambawale, M.J. The socio-technical barriers to Solar Home Systems (SHS) in Papua New Guinea: “Choosing pigs, prostitutes, and poker chips over panels. Energy Policy
**2011**, 39, 1532–1542. [Google Scholar] [CrossRef] - Frondel, M.; Ritter, N.; Schmidt, C.M. Germany’s solar cell promotion: Dark clouds on the horizon. Energy Policy
**2008**, 36, 4198–4204. [Google Scholar] [CrossRef] [Green Version] - Smestad, G.P.; Krebs, F.C.; Granqvist, C.G.; Chopra, K.L.; Mathew, X.; Gordon, I.; Lampert, C.M. Priority publishing in Solar Energy Materials and Solar Cells. Sol. Energy Mater. Sol. Cells.
**2010**, 94, 1187–1190. [Google Scholar] [CrossRef] - Kolodinski, S.; Werner, J.H.; Queisser, H.J. Quantum efficiencies exceeding unity in silicon leading to novel selection principles for solar cell materials. Sol. Energy Mater. Sol. Cells.
**1994**, 33, 275–285. [Google Scholar] [CrossRef] - Takeda, Y.; Wakahara, A.; Sasaki, A. Calculation of photovoltaic characteristics and materials selection for low-band-gap cells of multi-structure solar cell system. Sol. Energy Mater. Sol. Cells.
**1992**, 26, 85–98. [Google Scholar] [CrossRef] - Liu, R.X.; Xie, S.M. Innovation Management and Industrial Engineering. In Proceedings of the 2009 International Conference on Information Management, Washington, DC, USA, 26–27 December 2010; pp. 375–379. [Google Scholar]
- Jacobsson, S.; Lauber, V. The politics and policy of energy system transformation-explaining the German diffusion of renewable energy technology. Energy Policy
**2006**, 34, 256–276. [Google Scholar] [CrossRef] - Fernandez, A.I.; Martínez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F. Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells.
**2010**, 94, 1723–1729. [Google Scholar] [CrossRef] - Gupta, N. Material selection for thin-film solar cells using multiple attribute decision making approach. Mater. Des.
**2011**, 32, 1667–1671. [Google Scholar] [CrossRef] - Hillhouse, H.W.; Beard, M.C. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Curr. Opin. Colloid Interface Sci.
**2009**, 14, 245–259. [Google Scholar] [CrossRef] - Rahm, D. US public policy and emerging technologies: The case of solar energy. Energy Policy
**1993**, 21, 374–384. [Google Scholar] [CrossRef] - Schoijet, M. Possibilities of new materials for solar photovoltaic cells. Solar Energy Mater.
**1979**, 1, 43–57. [Google Scholar] [CrossRef] - Kadir, M.Z.A.A.; Rafeeu, Y.; Adam, N.M. Prospective scenarios for the full solar energy development in Malaysia. Renew. Sustain. Energy Rev.
**2010**, 14, 3023–3031. [Google Scholar] [CrossRef] - Matin, M.A.; Aliyu, M.M.; Quadery, A.H.; Amin, N. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis. Sol. Energy Mater. Sol. Cells
**2010**, 94, 1496–1500. [Google Scholar] [CrossRef] - Azzopardi, B.; Mutale, J. Life cycle analysis for future photovoltaic systems using hybrid solar cells. Renew. Sustain. Energy Rev.
**2010**, 14, 1130–1134. [Google Scholar] [CrossRef] - Huang, Y.; Porter, A.L.; Zhang, Y.; Lian, X.; Guo, Y. An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs). Technol. Forecast. Soc. Chang.
**2019**, 146, 831–843. [Google Scholar] [CrossRef] - Baker, E.; Chon, H.; Keisler, J. Advanced solar R&D: Combining economic analysis with expert elicitations to inform climate policy. Energy Econ.
**2009**, 31, 37–49. [Google Scholar] - Laleman, R.; Albrecht, J.; Dewulf, J. Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renew. Sustain. Energy Rev.
**2011**, 15, 267–281. [Google Scholar] [CrossRef] - Li, X.; Xie, Q.; Jiang, J.; Zhou, Y.; Huang, L. Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technol. Forecast. Soc. Chang.
**2019**, 146, 687–705. [Google Scholar] [CrossRef] - Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev.
**2011**, 15, 1625–1636. [Google Scholar] [CrossRef] - Delucchi, M.A.; Jacobson, M.Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy
**2011**, 39, 1170–1190. [Google Scholar] [CrossRef] - Huang, Y.H.; Wu, J.H. Technological system and renewable energy policy: A case study of solar photovoltaic in Taiwan, Renew. Sustain. Energy Rev.
**2007**, 11, 345–356. [Google Scholar] [CrossRef] - Sarkar, B.; Omair, M.; Choi, S.B. A Multi-Objective Optimization of Energy, Economic, and Carbon Emission in a Production Model under Sustainable Supply Chain Management. Appl. Sci.
**2018**, 8, 1744. [Google Scholar] [CrossRef] [Green Version] - Turskis, Z.; Urbonas, K.; Daniūnas, A. A Hybrid Fuzzy Group Multi-Criteria Assessment of Structural Solutions of the Symmetric Frame Alternatives. Symmetry
**2019**, 11, 261. [Google Scholar] [CrossRef] [Green Version] - Chen, H.M.W.; Chou, S.Y.; Luu, Q.D.; Yu, T.H.K. A Fuzzy MCDM Approach for Green Supplier Selection from the Economic and Environmental Aspect. Math. Probl. Eng.
**2016**, 2016, 8097386. [Google Scholar] - Wu, W.W. Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Syst. Appl.
**2008**, 35, 828–835. [Google Scholar] [CrossRef] - Lin, Y.T.; Yang, Y.H.; Kang, J.S.; Yu, H.C. Using DEMATEL method to explore the core competences and causal effect of the IC design service company: An empirical case study. Expert Syst. Appl.
**2011**, 38, 6262–6268. [Google Scholar] [CrossRef] - Falqi, I.I.; Ahmed, M.; Mallick, J. Siliceous Concrete Materials Management for Sustainability Using Fuzzy-TOPSIS Approach. Appl. Sci.
**2019**, 9, 3457. [Google Scholar] [CrossRef] [Green Version] - Wang, P.; Li, Y.; Wang, Y.H.; Zhu, Z.Q. A New Method Based on TOPSIS and Response Surface Method for MCDM Problems with Interval Numbers. Math. Probl. Eng.
**2015**, 2015, 938535. [Google Scholar] [CrossRef] [Green Version] - Lu, Y.; Jin, C.; Qiu, J.; Jiang, P. Using a Hybrid Multiple-Criteria Decision-Making Technique to Identify Key Factors Influencing Microblog Users’ Diffusion Behaviors in Emergencies: Evidence from Generations Born after 2000. Symmetry
**2019**, 11, 265. [Google Scholar] [CrossRef] [Green Version] - Tzeng, G.H.; Chiang, C.H.; Li, C.W. Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst. Appl.
**2007**, 32, 1028–1044. [Google Scholar] [CrossRef] - Matić, B.; Jovanović, S.; Das, D.K.; Zavadskas, E.K.; Stević, Ž.; Sremac, S.; Marinković, M. A New Hybrid MCDM Model: Sustainable Supplier Selection in a Construction Company. Symmetry
**2019**, 11, 353. [Google Scholar] [CrossRef] [Green Version] - Wang, C.Y.; Tsai, P.H.; Zheng, H. Constructing Taipei City Sports Centre Performance Evaluation Model with Fuzzy MCDM Approach Based on Views of Managers. Math. Probl. Eng.
**2013**, 2013, 138546. [Google Scholar] [CrossRef] - Wu, H.H.; Tsai, N. A DEMATEL method to evaluate the causal relations among the criteria in auto spare parts industry. Appl. Math. Comput.
**2011**, 218, 2334–2342. [Google Scholar] [CrossRef] - Wu, H.H.; Chen, H.K.; Shieh, J.I. Evaluating performance criteria of Employment Service Outreach Program personnel by DEMATEL method. Expert Syst. Appl.
**2010**, 37, 5219–5223. [Google Scholar] [CrossRef] - Nie, R.X.; Wang, J.Q.; Zhang, H.Y. Solving Solar-Wind Power Station Location Problem Using an Extended Weighted Aggregated Sum Product Assessment (WASPAS) Technique with Interval Neutrosophic Sets. Symmetry
**2017**, 9, 106. [Google Scholar] [CrossRef] - Zhou, Q.; Huang, W.; Zhang, Y. Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Saf. Sci.
**2010**, 49, 243–252. [Google Scholar] [CrossRef] - Bausys, R.; Kazakeviciute-Januskeviciene, G. Qualitative Rating of Lossy Compression for Aerial Imagery by Neutrosophic WASPAS Method. Symmetry
**2021**, 13, 273. [Google Scholar] [CrossRef] - Mishima, T.; Taguchi, M.; Sakata, H.; Maruyama, E. Development status of high-efficiency HIT solar cells. Sol. Energy Mater. Sol. Cells.
**2011**, 95, 18–21. [Google Scholar] [CrossRef] - Mohamed, A.R.; Lee, K.T. Energy for sustainable development in Malaysia: Energy policy and alternative energy. Energy Policy
**2006**, 34, 2388–2397. [Google Scholar] [CrossRef] - Rehman, A.; Shekhovtsov, A.; Rehman, N.; Faizi, S.; Sałabun, W. On the Analytic Hierarchy Process Structure in Group Decision-Making Using Incomplete Fuzzy Information with Applications. Symmetry
**2021**, 13, 609. [Google Scholar] [CrossRef] - Mian, S.A. Assessing value-added contributions of university technology business incubators to tenant firms. Res. Policy
**1996**, 25, 325–335. [Google Scholar] [CrossRef] - Mian, S.A. Assessing and managing the university technology business incubator: An integrative framework. J. Bus. Ventur.
**1997**, 12, 251–285. [Google Scholar] [CrossRef] - Colombo, M.G.; Delmastro, M. How effective are technology incubators? Evidence from Italy. Res. Policy.
**2002**, 31, 1103–1122. [Google Scholar] [CrossRef] - Chou, C.C.; Ding, J.F. Application of an Integrated Model with MCDM and IPA to Evaluate the Service Quality of Transshipment Port. Math. Probl. Eng.
**2013**, 2013, 656757. [Google Scholar] [CrossRef] - Mahmood, T.; Ahmmad, J.; Ali, Z.; Pamucar, D.; Marinkovic, D. Interval Valued T-Spherical Fuzzy Soft Average Aggregation Operators and Their Applications in Multiple-Criteria Decision Making. Symmetry
**2021**, 13, 829. [Google Scholar] [CrossRef] - Lumpkin, J.R.; Ireland, D.R. Screening practices of new business incubators: The evaluation of critical success factors. Am. J. Small Bus.
**1988**, 12, 59–81. [Google Scholar] [CrossRef] - Liu, L.Q.; Wang, Z.X.; Zhang, H.Q.; Xue, Y.C. Solar energy development in China-A review. Renew. Sustain. Energy Rev.
**2010**, 14, 301–311. [Google Scholar] [CrossRef] - Rothschild, L.; Darr, A. Technological incubators and the social construction of innovation networks: An Israeli case study. Technovation
**2005**, 25, 59–67. [Google Scholar] [CrossRef] - Pearce, J.M. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems. Energy
**2009**, 34, 1947–1954. [Google Scholar] [CrossRef] [Green Version] - Kou, G.; Wu, W. An Analytic Hierarchy Model for Classification Algorithms Selection in Credit Risk Analysis. Math. Probl. Eng.
**2014**, 2014, 297563. [Google Scholar] [CrossRef] [Green Version] - Vaidogas, E.R.; Šakėnaitė, J. Solving the Problem of Multiple-Criteria Building Design Decisions with respect to the Fire Safety of Occupants: An Approach Based on Probabilistic Modelling. Math. Probl. Eng.
**2015**, 2015, 792658. [Google Scholar] [CrossRef] - Carpenter, R.; Petersen, B. Capital Market Imperfections, High-Tech Investment, and New Equity Financing. Econ. J.
**2002**, 477, 54–72. [Google Scholar] [CrossRef] [Green Version] - Chang, P.L.; Shih, H.Y. The innovation systems of Taiwan and China: A comparative analysis. Technovation
**2004**, 24, 529–539. [Google Scholar] [CrossRef] - Gul, M.; Guneri, A.F. Hospital Location Selection: A Systematic Literature Review on Methodologies and Applications. Math. Probl. Eng.
**2021**, 2021, 6682958. [Google Scholar] [CrossRef] - Admati, A.; Pfleiderer, P. Robust Financial Contracting and the Role of Venture Capitalists. J. Financ.
**1994**, 49, 371–402. [Google Scholar] [CrossRef] - Ye, J.; Du, S.; Yong, R. Similarity Measures between Intuitionistic Fuzzy Credibility Sets and Their Multicriteria Decision-Making Method for the Performance Evaluation of Industrial Robots. Math. Probl. Eng.
**2021**, 2021, 6630898. [Google Scholar] [CrossRef] - Huang, C.Y.; Shyu, J.Z.; Tzeng, G.H. Reconfiguring the innovation policy portfolios for Taiwan’s SIP Mall industry. Technovation
**2007**, 27, 744–765. [Google Scholar] [CrossRef] - Kumar, R.; Rosen, M.A. Performance evaluation of a double pass PV/T solar air heater with and without fins. Appl. Therm. Eng.
**2011**, 31, 1402–1410. [Google Scholar] [CrossRef] - Viana, T.S.; Rüther, R.; Martins, F.R.; Pereira, E.B. Assessing the potential of concentrating solar photovoltaic generation in Brazil with satellite-derived direct normal irradiation. Sol. Energy
**2011**, 85, 486–495. [Google Scholar] [CrossRef]

**Table 1.**Sum of ${\tilde{R}}_{i}\text{}value$, ${\tilde{C}}_{i}\text{}value$, ${\tilde{R}}_{i}+{\tilde{C}}_{i}\text{}value$ and ${\tilde{R}}_{i}-{\tilde{C}}_{i}\text{}value$ impacts of the three measurements.

${\tilde{\mathit{R}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{R}}}_{\mathit{i}}+{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{R}}}_{\mathit{i}}-{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | |
---|---|---|---|---|

Market benefit | (0.401,1.134,4.655) | (0.373,1.134,4.655) | (0.774,2.268,9.310) | (0.027,0.000,−0.001) |

Technological ability | (0.302,1.010,4.363) | (0.237,0.927,4.109) | (0.539,1.937,8.472) | (0.064,0.083,0.255) |

Government policy | (0.359,1.124,4.576) | (0.450,1.207,4.830) | (0.809,2.331,9.407) | (−0.091,−0.084,−0.254) |

**Table 2.**The sum ${({\tilde{R}}_{i}+{\tilde{C}}_{i})}^{def}\text{}value$ and ${({\tilde{R}}_{i}-{\tilde{C}}_{i})}^{def}\text{}value$ of the impacts of the three measurements.

${\tilde{\mathit{R}}}_{\mathit{i}}+{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{R}}}_{\mathit{i}}-{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | |
---|---|---|

Market benefit | 3.376 | 0.006 |

Technological ability | 3.002 | 0.111 |

Government policy | 3.436 | 5.684 |

**Table 3.**The sum ${\tilde{R}}_{i}\text{}value$, ${\tilde{C}}_{i}\text{}value$, ${\tilde{R}}_{i}+{\tilde{C}}_{i}\text{}value$ and ${\tilde{R}}_{i}-{\tilde{C}}_{i}\text{}value$ impacts of the second-level criteria of the market benefit.

${\tilde{\mathit{R}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{R}}}_{\mathit{i}}+{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{R}}}_{\mathit{i}}-{\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | |
---|---|---|---|---|

Product life | (0.230,0.785,4.782) | (0.223,0.776,5.048) | (0.453,1.561,9.830) | (0.008,0.010,−0.265) |

Competitive price | (0.318,1.066,5.965) | (0.362,1.130,5.999) | (0.679,2.196,11.964) | (−0.044,−0.064,−0.034) |

Various applications | (0.238,0.892,5.377) | (0.258,0.950,5.544) | (0.496,1.842,10.921) | (−0.020,−0.058,−0.167) |

Market size | (0.412,1.240,6.495) | (0.355,1.128,6.029) | (0.767,2.368,12.524) | (0.056,0.112,0.466) |

**Table 4.**The sum ${({\tilde{R}}_{i}+{\tilde{C}}_{i})}^{def}\text{}value$ and ${({\tilde{R}}_{i}-{\tilde{C}}_{i})}^{def}\text{}value$ of the impacts of the four criteria of the market benefit.

Product life | 2.991 | −10.398 |

Competitive price | 3.816 | −0.065 |

Various applications | 3.383 | 0.001 |

Market size | 4.027 | 0.169 |

**Table 5.**The sum of ${\tilde{R}}_{i}\text{}value$, ${\tilde{C}}_{i}\text{}value$, ${\tilde{R}}_{i}+{\tilde{C}}_{i}\text{}value$ and ${\tilde{R}}_{i}-{\tilde{C}}_{i}\text{}value$ impacts of the second-level criteria of the technological ability.

${\tilde{\mathit{R}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | |||
---|---|---|---|---|

Superiority of technique | (0.346,1.282,7.984) | (0.353,1.324,8.134) | (0.699,2.605,16.117) | (−0.006,−0.042,−0.150) |

Possibility of acquiring original technique | (0.430,1.408,8.438) | (0.393,1.359,8.264) | (0.823,2.767,16.702) | (0.036,0.048,0.174) |

Reliability of technique | (0.396,1.390,8.373) | (0.363,1.274,7.957) | (0.760,2.664,16.330) | (0.033,0.115,0.416) |

Technical personnel | (0.341,1.242,7.841) | (0.405,1.364,8.281) | (0.746,2.606,16.122) | (−0.063,−0.122,−0.440) |

**Table 6.**The sum ${({\tilde{R}}_{i}+{\tilde{C}}_{i})}^{def}\text{}value$ and ${({\tilde{R}}_{i}-{\tilde{C}}_{i})}^{def}\text{}value$ of impacts of the three criteria of the technological ability.

Superiority of technique | 4.858 | 0.004 |

Possibility of acquiring original technique | 5.070 | 0.072 |

Reliability of technique | 4.937 | 0.156 |

Technical personnel | 4.863 | −2.184 |

**Table 7.**The sum of ${\tilde{R}}_{i}\text{}value$, ${\tilde{C}}_{i}\text{}value$, ${\tilde{R}}_{i}+{\tilde{C}}_{i}\text{}value$ and ${\tilde{R}}_{i}-{\tilde{C}}_{i}\text{}value$ impacts of the second-level criteria of the government policy.

${\tilde{\mathit{R}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | ${\tilde{\mathit{C}}}_{\mathit{i}}\text{}\mathit{V}\mathit{a}\mathit{l}\mathit{u}\mathit{e}$ | |||
---|---|---|---|---|

Training programs | (0.132,0.678,5.313) | (0.180,0.669,4.898) | (0.312,1.347,10.211) | (−0.048,0.009,0.415) |

Tax reduction | (0.203,0.687,5.083) | (0.169,0.678,5.182) | (0.372,1.366,10.265) | (0.034,0.009,−0.100) |

Linkage with R&D programs | (0.201,0.755,5.428) | (0.192,0.744,5.311) | (0.393,1.500,10.739) | (0.009,0.011,0.117) |

Consumer subsidy | (0.162,0.588,4.586) | (0.157,0.617,5.019) | (0.319,1.204,9.605) | (0.005,−0.029,−0.432) |

**Table 8.**The sum ${({\tilde{R}}_{i}+{\tilde{C}}_{i})}^{def}\text{}value$ and ${({\tilde{R}}_{i}-{\tilde{C}}_{i})}^{def}\text{}value$ of impacts of the three criteria of the government policy.

Training programs | 2.844 | 0.076 |

Tax reduction | 2.869 | 0.037 |

Linkage with R&D programs | 3.041 | 0.030 |

Consumer subsidy | 2.643 | −3.524 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sun, C.-C.; Chang, S.-C.
An Assessment Framework for Solar Cell Material Based on a Modified Fuzzy DEMATEL Approach. *Energies* **2021**, *14*, 5708.
https://doi.org/10.3390/en14185708

**AMA Style**

Sun C-C, Chang S-C.
An Assessment Framework for Solar Cell Material Based on a Modified Fuzzy DEMATEL Approach. *Energies*. 2021; 14(18):5708.
https://doi.org/10.3390/en14185708

**Chicago/Turabian Style**

Sun, Chia-Chi, and Shih-Chi Chang.
2021. "An Assessment Framework for Solar Cell Material Based on a Modified Fuzzy DEMATEL Approach" *Energies* 14, no. 18: 5708.
https://doi.org/10.3390/en14185708