Value Proposition of Different Methods for Utilisation of Sugarcane Wastes
Abstract
:1. Introduction
2. Methodology
3. Waste Utilisation/Recovery
3.1. Bagasse
3.2. Molasses
3.3. Cane Trash
4. Products from Sugarcane Wastes
4.1. Ethanol
4.1.1. From Molasses
- Reaction:
- Molar mass balance (kmol × kg/kmol) 1×180.16 2×46.07 2×44.01
- Mass balance (%) 100.00 51.14 48.86
4.1.2. From Bagasse/Trash
Bagasse
Trash
4.2. Other Alcohols
4.2.1. ABE—Bagasse/Trash
4.2.2. Furfural—Bagasse/Trash
4.3. Hydrogen—Bagasse/Trash
- Reaction:
- Molar mass balance (kmol × kg/kmol) 1 × 180.16 2.4 × 2
- Mass balance (kg) 180.16 4.8
4.4. Ethanol and Biogas—Bagasse/Trash
4.5. Dry Pellets—Bagasse/Trash
4.6. Pyrolysis and Gasification—Bagasse/Trash
4.7. Pulp and Paper—Bagasse/Trash
- ▪
- Storage: bagasse is a seasonal byproduct from the milling process; it is produced in huge quantities in a short period of time. Large storage facilities and long storage time is required in order for the pulping process to proceed. Special methods of storage are required as bagasse is prone to biological activity. This may lead to color and fibre degradation, as well as loss of fibre properties;
- ▪
- De-Pithing: bagasse normally contains 30–35% fine, thin walled and low cellulose content cells, which should be removed from the pulping process. These cells are called “Pith Cells”, the presence of such fibres can result in higher consumption of chemicals, poor draining pulp and reduced scattering power in mechanical pulps. An enhanced de-pithing process is required to reduce economic losses;
- ▪
- Silica content: bagasse contains high quantities of silica compared to woody fibre sources such as eucalyptus. Silica is a major issue in the pulping process. The removal, chemical recovery or other reliable methods are required to make the operation practical.
4.8. Product from Sugar—Ethanol
5. Sustainability of Sugarcane Production
6. Recent Development in Sugarcane Industry
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Utilisation Method | Amount, kg/t Material | Total Amount, t/Year | Energy Content, kJ/kg | Total Energy, GJ | Value, AUD | |
---|---|---|---|---|---|---|
Sugar and Molasses | ||||||
Sugar (AUD 390/t) | --- | 4,360,000 | --- | --- | 1,700,400,000 | |
Sugar to Ethanol (based on energy content) | 484 | 2,110,240 | 29,677 | 62,625,592 | 246,118,576 | |
Sugar to Ethanol (AUD 1/L) | 484 | 2,110,240 | --- | --- | 2,674,575,411 | |
Molasses (AUD 100/t) | --- | 1,000,000 | --- | --- | 100,000,000 | |
Molasses—Ethanol (based on energy content) | 209 | 209,766 | 29,677 | 6,225,226 | 24,465,137 | |
Molasses—Ethanol (AUD 1/L) | 209 | 209,766 | --- | --- | 265,863,000 | |
Bagasse | ||||||
Burn Wet | --- | 10,000,000 | 7588 | 75,880,000 | 298,208,400 | |
Burn Dry (energy for drying included) | 500 | 5,000,000 | 17,659 | 85,513,400 | 336,067,662 | |
Sell dry (AUD 40/t) | 500 | 5,000,000 | --- | --- | 200,000,000 | |
Ethanol | Ethanol (Energy) | 268.3 | 952,859 | 29,677 | 28,277,996 | 111,132,526 |
Ethanol (AUD 1/L) | 268.3 | 952,859 | --- | --- | 1,207,680,000 | |
dry solid | 226 | 2,260,000 | 17,659 | 39,909,340 | 156,843,706 | |
ABE | ABE (energy) | 45.3 | 435,000 | 31,377 | 13,648,995 | 53,640,550 |
ABE (AUD 1/L) | 45.3 | 435,000 | --- | --- | 559,259,259 | |
dry solid | 260 | 2,600,000 | 17,659 | 45,913,400 | 180,439,662 | |
Furfural + acetic acid | Furfural (AUD 1200/t) | 13.7 | 136,896 | --- | --- | 164,275,200 |
Acetic acid (AUD 550/t) | 6.3 | 62,496 | --- | --- | 34,372,800 | |
Dry solid | 0.317 | 3,168,000 | 17,659 | 55,943,712 | 219,8587,88 | |
Hydrogen, Water extraction | H2 (energy) | 3.06 | 30,600 | 142,000 | 4,345,200 | 17,076,636 |
H2 (AUD 2.7/kg) | 3.06 | 30,600 | --- | --- | 82,620,000 | |
Dry solid | 260 | 2,600,000 | 17,659 | 45,913,400 | 180,439,662 | |
Biogas + Ethanol | Biogas (energy) | 86.02 | 430,100 | 22,000 | 9,462,200 | 37,186,446 |
Biogas (Electricity) | 86.02 | 430,100 | --- | --- | 78,540,000 | |
Ethanol (energy) | 201.2 | 1,005,975 | 29,677 | 29,854,320 | 117,327,477 | |
Ethanol (AUD 1/L) | 201.2 | 1,005,975 | --- | --- | 1,275,000,000 | |
Pyrolysis at 900 °C for 1 h | --- | 3,664,000 | --- | 71,171,500 | 529,703,000 | |
Gasification at 900 °C | --- | 3,158,500 | --- | 53,707,000 | 415,819,000 | |
Pulp | Pulp (AUD 1132/t) | 0.044 | 438,750 | -- | -- | 496,665,000 |
Remain solid | 0.94 | 9,405,250 | 7588 | 71,367,037 | 280,472,455 | |
Total | 777,137,455 | |||||
Burn Wet | Tops | --- | 4,748,800 | 4472 | 21,239,150 | 83,469,859 |
Leaves | --- | 2,337,300 | 15,417 | 36,036,421 | 141,623,134 | |
Burn Dry + drying energy included | Tops | 0.38 | 1,804,544 | 17,659 | 30,226,492 | 118,790,113 |
Leaves | 0.91 | 2,122,268 | 17,659 | 37,357,365 | 146,814,444 | |
Ethanol Tops | Ethanol (energy) | 33.5 | 158,933 | 29,677 | 4,716,654 | 18,536,452 |
Ethanol (AUD 1/L) | 33.5 | 158,933 | --- | --- | 201,435,995 | |
dry solid | 131.5 | 624,859 | 17,659 | 11,034,385 | 43,365,133 | |
Ethanol Leaves | Ethanol (energy) | 95.1 | 222,274 | 29,677 | 6,596,425 | 25,923,952 |
Ethanol (AUD 1/L) | 95.1 | 222,274 | --- | --- | 281,716,096 | |
dry Solid | 356 | 832,014 | 17,659 | 14,692,535 | 57,741,663 | |
ABE tops | ABE (energy) | 22.6 | 107,391 | 31,377 | 3,369,607 | 13,242,557 |
ABE (AUD 1/L) | 22.9 | 107,391 | --- | --- | 132,581,481 | |
dry solid | 94 | 470,000 | 17,659 | 8,299,730 | 32,617,938 | |
ABE leaves | ABE (energy) | 66.9 | 156,592 | 31,377 | 4,913,387 | 19,309,611 |
ABE (AUD 1/L) | 66.9 | 156,592 | --- | --- | 193,323,456 | |
dry solid | 240 | 1,200,000 | 17,659 | 21,190,800 | 83,279,844 | |
Furfural + acetic acid Tops | Furfural (AUD 1200/t) | 3.1 | 14,609 | --- | --- | 17,530,800 |
Acetic acid (AUD 550/t) | 1.4 | 6669 | --- | --- | 3,667,950 | |
Dry solid | 0.163 | 774,149 | 17,659 | 13,670,697 | 53,725,839 | |
Furfural + acetic acid Leaves | Furfural | 6.4 | 15,034 | --- | --- | 18,040,800 |
Acetic acid | 2.9 | 6863 | --- | --- | 3,774,650 | |
Dry solid | 0.472 | 1,103,579 | 17,659 | 19,388,779 | 76,197,903 | |
Hydrogen, Trash—Tops, water extraction | H2(energy) | 3.06 | 8440 | 142,000 | 1,198,480 | 4,710,026 |
H2 (AUD 2.7/kg) | 3.06 | 8440 | --- | --- | 22,788,000 | |
Dry solid | 260 | 969,040 | 17,659 | 17,112,277 | 67,251,250 | |
Hydrogen, Trash—Leaves, water extraction | H2 (energy) | 3.06 | 9920 | 142 | 1,408,640 | 5,535,955 |
H2 (AUD 2.7/kg) | 3.06 | 9920 | --- | --- | 26,784,000 | |
Dry solid | 260 | 1,090,845 | 17,659 | 19,263,231 | 75,704,501 | |
Biogas + Ethanol (tops + leaves) | Biogas (energy) | 86.02 | 337,784 | 22,000 | 7,431,248 | 29,204,804 |
Biogas (Electricity) | 86.02 | 337,784 | --- | --- | 61,682,362 | |
Ethanol (energy) | 201.2 | 790,054 | 29,677 | 23,446,432 | 92,144,479 | |
Ethanol (AUD 1/L) | 201.2 | 790,054 | --- | --- | 1,001,337,060 | |
Pyrolysis at 900 °C for 1 h | Tops | --- | --- | --- | --- | 191,281,664 |
Leaves | --- | --- | --- | --- | 149,777,152 | |
Gasification at 900 °C | Tops | --- | --- | --- | --- | 224,960,408 |
Leaves | --- | --- | --- | --- | 176,148,244 | |
Pulp Tops | Pulp (AUD 1132/t) | 0.088 | 158,799 | --- | --- | 179,761,455 |
Remain dry solid | 0.88 | 1,587,998 | 17,659 | 28,042,456 | 110,206,854 | |
Total | 289,968,309 |
References
- De Albuquerque Wanderley, M.C.; Martín, C.; de Moraes Rocha, G.J.; Gouveia, E.R. Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour. Technol. 2013, 128, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Kent, A.; Mercer, D. Australia’s mandatory renewable energy target (MRET): An assessment. Energy Policy 2006, 34, 1046–1062. [Google Scholar] [CrossRef]
- Pillai, I.; Banerjee, R. Renewable Energy in India: Status and Potential. Energy 2009, 34, 970–980. [Google Scholar] [CrossRef]
- Fischer, R.A.; Byerlee, D.; Edmeades, G.O. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Australian Centre for International Agricultural Research: Canberra, Australia, 2014. [Google Scholar]
- Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, I. Cellulosic Ethanol from Sugarcane Bagasse in Australia: Exploring Industry Feasibility through Systems Analysis, Techno-Economic Assessment and Pilot Plant Development. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2011. [Google Scholar]
- Covey, G.; Thomas, R.; Dennis, S. A New Opportunity to Pulp Bagasse in Australia? In Proceedings of the Australian Society of Sugar Cane Technologists; Hogarth, D., Ed.; QUT ePrints: Mackay, Australia, 2006. [Google Scholar]
- O’Hara, I.M. The potential for ethanol production from sugarcane in Australia. In Proceedings of the Australian Society of Sugar Cane Technologists 2010; Australian Society of Sugar Cane Technologists: Bundaberg, Australia, 2010; Volume 32, pp. 600–609. [Google Scholar]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Laj, P.; Klausen, J.; Bilde, M.; Plaß-Duelmer, C.; Pappalardo, G.; Clerbaux, C.; Baltensperger, U.; Hjorth, J.; Simpson, D.; Reimann, S.; et al. Measuring atmospheric composition change. Atmos. Environ. 2009, 43, 5351–5414. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, X.; Wang, D.; Zhu, J.; Liu, G.; Seneweera, S. Elevated atmospheric [CO2] stimulates sugar accumulation and cellulose degradation rates of rice straw. GCB Bioenergy 2015, 8, 579–587. [Google Scholar] [CrossRef]
- Furtado, A.; Lupoi, J.S.; Hoang, N.V.; Healey, A.; Singh, S.; Simmons, B.A.; Henry, R.J. Modifying plants for biofuel and biomaterial production. Plant Biotechnol. J. 2014, 12, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Kuan, W.C. 2015. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 2015, 10, 840–854. [Google Scholar] [CrossRef]
- Vohra, M.; Manwar, J.; Manmode, R.; Padgilwar, S.; Patil, S. Bioethanol production: Feedstock and current technologies. J. Environ. Chem. Eng. 2014, 2, 573–584. [Google Scholar] [CrossRef]
- Sugar Research Australia (SRA). Strategic Plan 2013/2014—2017/2018. Available online: www.sugarresearch.com.au (accessed on 15 August 2021).
- Australian Sugar (AS) & Milling Council (MC). Australian Sugarcane Industry Overview. Available online: http://asmc.com.au/industry-overview/statistics/ (accessed on 15 August 2021).
- Pippo, W.A.; Luengo, C.A. Sugarcane energy use: Accounting of feedstock energy considering current agro-industrial trends and their feasibility. Int. J. Energy Environ. Eng. 2013, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- The Agricultural Production Indices FAOSTAT. Food and Agricultural Organisation of the United Nations (FAO). Available online: http://faostat.fao.org/ (accessed on 15 August 2021).
- Qureshi, M.E.; Wegener, M.K.; Mallawaarachchi, T. The economics of sugar mill waste management in the Australian Sugar Industry: Mill mud case study. In Proceedings of the 45th Annual Conference of the Australian Agricultural and Resource Economics Society 2001, Adelaide, Australia, 23–25 January 2001. [Google Scholar]
- Bortolussi, G.; O’Neill, C.J. Variation in molasses composition from eastern Australian sugar mills. Aust. J. Exp. Agric. 2006, 46, 1455–1463. [Google Scholar] [CrossRef]
- Meat and Livestock Australia (MLA). Tips & Tools: Expanded Use of Molasses for Intensive Beef Cattle Feeding. Fact Sheet Published in 2008. Available online: www.mla.com.au/publications (accessed on 15 August 2021).
- Selina Wamucci. Australia Molasses Prices. Available online: https://www.selinawamucii.com/insights/prices/australia/molasses/ (accessed on 15 August 2021).
- Bundaberg Molasses (BM). Published in 2015. Available online: https://www.bundabergmolasses.com.au/molasses.html (accessed on 15 August 2021).
- Meier, E.A.; Thorburn, P.J.; Wegener, M.K.; Basford, K.E. The availability of nitrogen from sugarcane trash on contrasting tropics of North Queensland. Nutr. Cycl. Agroecosyst. 2006, 75, 101–114. [Google Scholar] [CrossRef]
- Franco, H.C.J.; Pimenta, M.T.B.; Carvalho, J.L.N.; Magalhães, P.S.G.; Rossell, C.E.V.; Braunbeck, O.A.; Vitti, A.C.; Kölln, O.T.; Neto, J.R. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci. Agric. 2013, 70, 305–312. [Google Scholar] [CrossRef] [Green Version]
- CANEGROWERS. Green Versus Burnt Cane Harvesting. Cited in 2015. Available online: http://www.bdbcanegrowers.com.au/images/images/fact_sheets/Green_Versus_Burnt_Cane_Harvesting.pdf (accessed on 15 August 2021).
- OECD/FAO. OECD-FAO Agricultural Outlook. OECD Agriculture Statistics (Database) 2021. doi:10.1787/agr-outldata-en. Available online: https://www.agri-outlook.org/commodities/oecd-fao-agricultural-outlook-meat.pdf (accessed on 15 August 2021).
- Biofuel Association of Australia (BAA). Ethanol in Australia. 2015. Available online: https://www.epw.qld.gov.au/__data/assets/pdf_file/0020/15950/biofuels-association-australia-biofuel-submission.pdf (accessed on 15 August 2021).
- Lavarack, B.P. Estimates of ethanol production from sugar cane feedstocks. In Proceedings of the 2003 Conference of the Australian Society of Sugar Cane Technologists, Townsville, Australia, 6–9 May 2003; p. 25. [Google Scholar]
- Qureshi, N.; Saha, B.C.; Hector, R.E.; Hughes, S.R.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I -Batch fermentation. Biomass Bioenergy 2008, 32, 168–175. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.C.; Cotta, M.A. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part II -Batch fermentation. Biomass Bioenergy 2008, 32, 176–183. [Google Scholar] [CrossRef]
- Jonglertjunya, W.; Makkhanon, W.; Siwanta, T.; Prayoonyong, P. Dilute Acid Hydrolysis of Sugarcane Bagasse for Butanol Fermentation. Chiang Mai J. Sci. 2014, 41, 60–70. [Google Scholar]
- Congcong, L.M.S. Butanol Production from Lignocellulosic Feedstocks by Acetone-Butanol-Ethanol Fermentation with Integrated Product Recovery. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2011. [Google Scholar]
- Uppal, S.K.; Gupta, R.; Dhillon, R.S.; Bhatia, S. Potential of sugarcane bagasse for production of furfural and its derivatives. Sugar Tech. 2008, 10, 298–301. [Google Scholar] [CrossRef]
- Wondu Business and Technology Services (WBTS). Furfural Chemicals and Biofuels from Agriculture; Publication No. 06/127. Project No. WBT-2A; Rural Industries Research and Development Corporation: Sydney, Australia, 2006. [Google Scholar]
- Tanisho, S. Feasibility study of biological hydrogen production from sugarcane by fermentation. Hydrog. Energy 1995, 6, 2. [Google Scholar]
- Hamawand, I.; Sandell, G.; Pittaway, P.; Chakrabarty, S.; Yusaf, T.; Chen, G.; Seneweera, S.; Al-Lwayzy, S.; Bennet, J.; Hopf, J. Bioenergy from Cotton Industry Wastes: A review and potential. Renew. Sustain. Energy Rev. 2016, 66, 435–448. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Benemann, J.R. Biological hydrogen production; fundamentals and limiting processes. Int. J. Hydrog. Energy 2002, 27, 1185–1193. [Google Scholar] [CrossRef]
- Wang, X.; Jin, B. Process optimization of biological hydrogen production from molassesby a newly isolated Clostridium butyricum W5. J. Biosci. Bioeng. 2009, 107, 138–144. [Google Scholar] [CrossRef]
- Janke, L.; Leite, A.; Nikolausz, M.; Schmidt, T.; Liebetrau, J.; Nelles, M.; Stinner, W. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing. Int. J. Mol. Sci. 2015, 16, 20685–20703. [Google Scholar] [CrossRef] [Green Version]
- Paturau, J.M.; Alternative Uses of Sugarcane and Its by-Products in Agro-Industries. FAO Corporation Document. 2014. Available online: http://www.fao.org/docrep/003/s8850e/s8850e03.htm (accessed on 15 August 2021).
- Beeby, C. Drying in Superheated Steam-Fluidized Bed. Ph.D. Dissertation, University of Monash, Melbourne, Australia, 1984. [Google Scholar]
- Trommelen, A.M.; Crosby, E.J. Evaporation and drying of drops in superheated vapours. AIChE J. 1969, 16, 857–867. [Google Scholar] [CrossRef]
- Deventer, H.C.; Heijmans, R.M.H. Drying with superheated steam. Dry. Technol. 2001, 19, 2033–2045. [Google Scholar] [CrossRef]
- Pronyk, C.; Cenkowski, S.; Muir, W.E. Drying foodstuff with superheated steam. Dry. Technol. 2004, 22, 899–916. [Google Scholar] [CrossRef]
- Tang, Z.; Cenkowski, S. Dehydration dynamics of potatoes in superheated steam and hot air. Can. Agric. Eng. 2000, 42, 6. [Google Scholar]
- Wimmerstedt, R.; Hager, J. Steam drying—Modelling and applications. Dry. Technol. 1996, 14, 1099–1119. [Google Scholar] [CrossRef]
- Hamawand, I.; Silva, W.P.; Eberhard, F.; Antille, D.L. Issues related to waste sewage sludge drying under superheated steam. Pol. J. Chem. Technol. 2015, 17, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.E.J.; Ardila, Y.C.; Lunelli, B.H.; Filho, R.M.; Maciel, M.R.W. Evaluation of Pyrolysis and Steam Gasification Processes of Sugarcane Bagasse in a Fixed Bed Reactor. Chem. Eng. Trans. 2013, 32, 925–930. [Google Scholar]
- Marshall, A.J. Commercial Application of Pyrolysis Technology in Agriculture. 2013. Available online: https://ofa.on.ca/wp-content/uploads/2017/11/Pyrolysis-Report-Final.pdf (accessed on 15 August 2021).
- IISD & SSI. Global Sustainable Sugarcane Production Shows Significant Growth. Available online: https://www.iisd.org/ssi/announcements/global-sustainable-sugarcane-production-shows-significant-growth-report/ (accessed on 30 January 2020).
- Lucas, F.; Philip, M.; Fearnside. Sugarcane Threatens Amazon Forest and World Climate; Brazilian Ethanol Is Not Clean. 2019. Available online: https://news.mongabay.com/2019/11/sugarcane-threatens-amazon-forest-and-world-climate-brazilian-ethanol-is-not-clean-commentary/ (accessed on 30 January 2020).
- Ihsan, H.; Saman, S.; Pubudu, K.; Jochen, B. Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: A short review. Nano-Struct. Nano-Objects 2020, 24, 100601. [Google Scholar]
- Atlas, B. Countries by Sugarcane Production. Available online: https://www.atlasbig.com/en-au/countries-by-sugarcane-production (accessed on 15 August 2021).
- Shahbandeh, M. Sugar Production Worldwide in 2020/2021, by Leading Country (in Million Metric Tons). 2021. Available online: https://www.statista.com/statistics/495973/sugar-production-worldwide/ (accessed on 15 August 2021).
- Strain, K.V.; Akshaya, G.M. Conversion of Lignocellulosic Sugarcane Bagasse Waste into Bioethanol using Indigenous Yeast. Iosci. Biotechnol. Res. Asia 2020, 17, 559–565. [Google Scholar]
- Yogita, L.; Rohit, R.; Ashish, A.; Prabhu, P.M.; Meenu, H.; Vinod, K.; Sachin, K.; Anuj, K.; Chandel, R.S. Recent Advances in Bioethanol Production from Lignocelluloses: A comprehensive focus on enzyme engineering and designer biocatalysts. Biofuel Res. J. 2020, 7, 1267–1295. [Google Scholar]
- Nerijus, P.; Marius, P.; Justinas, P.; Eugenija, F.D. Analysis of Wood Chip Characteristics for Energy Production in Lithuania. Energies 2021, 14, 13. [Google Scholar] [CrossRef]
- Shweta, J.; Keerthi Prabhu, M.K.; Mascarenhas, R.J.; Shetti, N.P.; Tejraj, M.A. Recent advances and viability in biofuel production. Energy Convers. Manag. 2021, 10, 100070. [Google Scholar]
- Zhang, X.; Zhou, Y.; Jia, X.; Feng, Y.; Dang, Q. Multi-Criteria Optimization of a Biomass-Based Hydrogen Production System Integrated With Organic Rankine Cycle. Front. Energy Res. 2020, 8, 584215. [Google Scholar] [CrossRef]
- Rana, A.A.; Al-Zuhairi, F.K. Biofuels (Bioethanol, Biodiesel, and Biogas) from Lignocellulosic Biomass: A Review. J. Univ. Babylon Eng. Sci. 2020, 28, 1. [Google Scholar]
- Deodatus, K.; Justin, N.; Godlisten, K. A Review of Intermediate Pyrolysis as a Technology of Biomass Conversion for Coproduction of Biooil and Adsorption Biochar. J. Renew. Energy 2021, 2021, 5533780. [Google Scholar]
- Bikash, K.; Nisha, B.; Komal, A.; Venkatesh, C.; Pradeep, V. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar]
- Bastos Lima, M.G. Corporate Power in the Bioeconomy Transition: The Policies and Politics of Conservative Ecological Modernization in Brazil. Sustainability 2021, 13, 12. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- D’Adamo, I.; Falcone, P.M.; Morone, P. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
Products | Unit | Production Annually | Unit * | Production |
---|---|---|---|---|
Main Product | ||||
Sugar | metric tonne | 4,360,000 | tonne/hectare | 11.75 |
Cane | metric tonne | 30,500,000 | tonne/hectare | 82.21 |
Byproducts | ||||
Bagasse | tonne/tonne sugar | 2.294 | tonne/hectare | 26.954 |
Trash | tonne/tonne sugar | 1.63 | tonne/hectare | 19.1 |
Molasses | tonne/tonne sugar | 0.229 | tonne/hectare | 2.695 |
Mill mud ** | tonne/tonne sugar | 0.140–0.419 | tonne/hectare | 1.644–4.932 |
Bagasse Constituent | Australia, Weight per Cent | World, Weight per Cent |
---|---|---|
Cellulose | 43 | 34–47 |
Hemicellulose
| 31 | 24–29 |
27 | -- | |
4 | -- | |
Lignin | 23 | 18–28 |
Extractives | 1 | -- |
Ash | 2 | -- |
Molasses Component | NSW (1997–2001) | Queensland (1997–2001) |
---|---|---|
Dry matter (g/kg) | 769 ± 5.9 | 765 ± 1.0 |
Total sugars (g/kg DM)
| 651 ± 9.6 | 637 ± 1.4 |
214 ± 10.6 | 183 ± 1.8 | |
436 ± 6.9 | 454 ± 1.3 | |
Ash (g/kg DM) | 164 ± 8.1 | 176 ± 1.1 |
Other organic matter (g/kg DM) | 184 ± 10.3 | 187 ± 1.3 |
Calculated metabolisable energy (MJ/kg DM) | 10.6 ± 0.10 | 10.5 ± 0.02 |
Specifications | Values |
---|---|
TDN, % | 62–65 |
Dry Matter, % | 75.0 |
Total Sugars, % | 50.0 |
Sucrose, % | 35.0 |
Protein, % | 3–5 |
Calcium, % | 1.15 |
Phosphors, % | 0.07 |
Magnesium, % | 0.61 |
Potassium, % | 5.19 |
Sodium, % | 0.1 |
Chlorine, % | 2.98 |
Sulphur, % | 0.73 |
Copper, mg/kg | 11.0 |
Zinc, mg/kg | 11.6 |
Manganese, mg/kg | 82.4 |
Iron, mg/kg | 246.0 |
Energy, MJ.ME/kg | 10.29 |
Fresh Matter, % | Fresh Matter, t/ha | Moisture, % | N, g/kg | K, g/kg | P, g/kg | Ca, g/kg | Mg, g/kg | S, g/kg | |
---|---|---|---|---|---|---|---|---|---|
Tops | 67 | 12.8 | 62 | 7.5 | 12.4 | 0.86 | 6.8 | 1.7 | 1.5 |
Dry leaves | 33 | 6.3 | 9.2 | 3.4 | 1.8 | 0.17 | 5.3 | 2.5 | 1.5 |
Total/average | 100 | 19.1 | 44.6 | 4.75 | 5.29 | 0.39 | 5.79 | 2.24 | 1.5 |
Ash | Lignin | Cellulose | Hemicelluloses | ||
---|---|---|---|---|---|
Tops | % | 4.7 | 21.7 | 39.7 | 32.0 |
t | 84,813 | 391,586 | 716,403 | 577,454 | |
Dry leaves | % | 4.7 | 22.7 | 40.8 | 28.7 |
t | 99,746 | 481,754 | 865,885 | 609,091 |
Byproduct | Produced, t/ha | Land Harvested, ha | Produced, t | Moisture Content, % |
---|---|---|---|---|
Trash, tops | 12.8 | 371,000 | 4,748,800 | 62 |
Trash, leaves | 6.3 | 371,000 | 2,337,300 | 9.2 |
Total/average | 19.1 | 371,000 | 7,086,100 | 44.6 |
Ethanol Plant | Feed Stock | Location | Owner | Installed Capacity, ML |
---|---|---|---|---|
Dalby Bio-Refinery | Red Sorghum | South, QLD | Dalby Bio-Refinery Pty Ltd. | 80 |
Manildra Ethanol Plant | Waste Starch | Coastal, NSW | Manildra Group | 300 |
Sarina Distillery | Molasses | Central, QLD | Sucrogen | 60 |
Total Capacity (ML) | 440 |
Production Steps | Estimated |
---|---|
Molasses, t | 1,000,000 |
Sugar content, % | 50 |
Sugar (hexoses), t | 500,000 |
Fermentable to Ethanol, % | 48.40 |
Ethanol potential, t | 242,000 |
Distillation efficiency, % | 98.5 |
Ethanol lost in the distillation, t | 3630 (1.5%) |
Ethanol lost as side products, t | 13,700 (51.14 − 48.4 = 2.74%) |
Ethanol produced, t; ML; L/t molasses | 238,370; 302; 302 |
For fermentation yield of 88% *, t; L/t molasses | 209,766; 266 |
CO2 produced, t | 244,300 |
Total gain, selling molasses, (AUD 100/t) | AUD 100,000,000/year |
Energy content, kJ/kg; Total energy GJ | 29,677; 6,225,226 |
Total gain, based on AUD 3.93/GJ Based on 1 tonne of black coal, which can produce 28 GJ energy at a price of AUD 110, this means AUD 3.93 per GJ. | AUD 24,465,137/year |
Based on AUD 1/L price of ethanol | AUD 266,000,000/year |
Bagasse Content | In Wet Solid, % | Amount in 10 Mt, Mt | Ethanol Potential, L/t | Amount of Ethanol, L in 3.552 Million Tonne Dry Fibre |
---|---|---|---|---|
Cellulose | 20.64 | 2.064 | 340 | 1,207,680,000 |
Hemicellulose | 14.88 | 1.488 | ||
Lignin | 11.04 | 1.104 | Leftover solid | |
Assume 20% leftover solid from cellulose and 50% from hemicellulose. Leftover dry solids (0.2064 × 0.2 + 0.1488 × 0.5 + 0.1104 = 0.226 kg/kg wet bagasse) |
Sugarcane Waste | Energy, kJ/kg | Conversion | Energy Content in 1 kg, kJ | Comments |
---|---|---|---|---|
Wet Bagasse | 7588 | --- | 7588 | Expensive to transport and store |
Ethanol | 29,677 | 0.268 kg ethanol/kg wet bagasse | 7953 + 3990 = 11,943 kJ | Easy to transport and store The 0.226 kg solid/kg wet bagasse leftover can produce 3990 kJ when burned wet (17,659 kJ/kg × 0.226 kg) |
Net Energy gain | 4355 kJ/kg | |||
Net energy gain for 10 million tonnes bagasse | 43,550,000 GJ | |||
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, this means AUD 3.93 per GJ. The saving is around AUD 171,151,500/year |
Tops, % | Amount, t | Dry Leaves, % | Amount, t | |
---|---|---|---|---|
Cellulose | 27.1 | 489,031 | 33.6 | 713,082 |
Hemicelluloses | 8.8 | 158,799 | 7.7 | 163,414 |
Lignin | 15.8 | 285,117 | 18.4 | 390,497 |
Bagasse Content | Amount, t | Conversion to Glucose after Hydrolysis, % | Amount of Glucose, t | Ethanol Potential, Conversion% | Amount of Ethanol, t | Amount of Ethanol kg/t Wet Tops |
---|---|---|---|---|---|---|
Cellulose | 489,031 | 63.6 ± 1.7 | 311,023 | 51.1 | 158,933 | 33.5 |
Hemicellulose | 158,799 | --- | --- | --- | --- | |
Lignin | 285,117 | --- | --- | --- | --- | --- |
Solid leftover, t (37% Cellulose + Hemicellulose + Lignin) | 624,859 | Solid leftover is 0.1315 kg/kg wet tops |
Bagasse Content | Amount, t | Conversion to Glucose after Hydrolysis, % | Amount of Glucose, t | Ethanol potential, Conversion% | Amount of Ethanol, t | Amount of Ethanol kg/t Wet Leaves |
---|---|---|---|---|---|---|
Cellulose | 713,082 | 61.0 ± 1.0 | 434,980 | 51.1 | 222,274 | 95.1 |
Hemicellulose | 163,414 | --- | --- | --- | --- | --- |
Lignin | 390,497 | --- | --- | --- | --- | --- |
Solid leftover, t (39% Cellulose + Hemicellulose + Lignin) | 832,014 | Solid leftover is 0.356 kg/kg wet leaves |
Sugarcane Waste | Energy, kJ/kg | Conversion, kg/kg Wet | Energy Content in 1 kg Wet, kJ | Comments |
---|---|---|---|---|
Wet trash | 7588 | --- | 7588 | Expensive to transport and store |
Ethanol from tops | 29,677 | 0.0335 | 994 + dry solid (0.1315 × 17,659) = 3316 | Easy to transport and store |
Ethanol from leaves | 29,677 | 0.095 | 2819 + dry solid (0.356 × 17,659) = 9105 | Easy to transport and store |
Net Energy gain | 4834 kJ/kg wet | |||
Net energy gain for 7,086,100 tonne wet tops plus leaves | 34,256,028 GJ | |||
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, and this means AUD 3.93 per GJ. The saving is around AUD 134,626,192/year |
Cellulose Amount, t | Convert to Glucose, Average, % | Glucose Convert to ABE, % | Amount of ABE, t | Amount Of ABE, Kg/Kg Wet Waste | ||
---|---|---|---|---|---|---|
Trash | tops | 489,031 | 61 | 36 | 107,391 | 0.0226 |
leaves | 713,082 | 61 | 36 | 156,592 | 0.0669 | |
Bagasse | 2,064,000 | 61 | 36 | 453,254 | 0.0453 |
Sugarcane Waste | Energy, ABE kJ/kg | Amount of ABE, kg/kg Wet Waste | Energy Content, kJ/kg Wet Solid | Total Amount, t | Total Energy, GJ | |
---|---|---|---|---|---|---|
ABE ABE 3:6:1 Average Energy = (3 × A + 6 × B + 1 × E) | Tops | 31,377 | 0.0226 | 709 + dry solid (0.094 × 17,659) = 2369 * | 4,748,800 | 11,249,650 |
Leaves | 31,377 | 0.0669 | 2099 + dry solid (0.24 × 17,659) = 6337 * | 2,337,300 | 14,811,844 | |
Bagasse | 31,377 | 0.0453 | 1421 + dry solid (0.26 × 17,659) = 6012 * | 10,000,000 | 60,123,400 |
Hemicellulose Amount, t | Convert to Furfural, Yield, % | Amount of Furfural, t | g/kg Wet | Convert to Acetic Acid, Yield, % | Amount of Acetic Acid, t | g/kg Wet | ||
---|---|---|---|---|---|---|---|---|
Trash | tops | 158,799 | 9.2 | 14,609 | 3.1 | 4.2 | 6669 | 1.4 |
leaves | 163,414 | 9.2 | 15,034 | 6.4 | 4.2 | 6863 | 2.9 | |
Bagasse | 1,488,000 | 9.2 | 136,896 | 13.7 | 4.2 | 62,496 | 6.3 |
Liquid Products | Amount of Furfural, t | Price, AUD/t * | Revenue Generated, AUD | Amount of Acetic Acid, t | Price, AUD/t | Revenue Generated, AUD | |
---|---|---|---|---|---|---|---|
Trash | tops | 14,609 | 1200 | 17,530,800 | 6669 | 550 | 3,667,950 |
leaves | 15,034 | 1200 | 18,040,800 | 6863 | 550 | 3,774,650 | |
Bagasse | 136,896 | 1200 | 164,275,200 | 62,496 | 550 | 34,372,800 | |
Solid left after fermentation | Energy, kJ/kg dry solid | Amount of dry solid, t (cellulose + lignin) | Total, GJ | Revenue | |||
Trash | tops | 17,659 | 774,149 | 13,670,697 | 53,725,839 | ||
leaves | 17,659 | 1,103,579 | 19,488,101 | 76,588,239 | |||
Bagasse | 17,659 | 3,168,000 | 55,943,712 | 219,8587,88 | |||
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, this means AUD 3.93 per GJ. | |||||||
Total revenue from the liquids produced and the solids remained | |||||||
Trash | tops | 74,924,589 | |||||
leaves | 98,403,689 | ||||||
Bagasse | 418,506,788 |
Substrate | H2 Production | H2 Production | Sugar and Byproduct Production, t | Total H2 Production, mm3 | |
---|---|---|---|---|---|
Sugar | 2.4 mol H2/mol sugar * | 313.4 m3/t sugar | 4,360,000 | 1366.4 | |
Molasses (53% sugar) | 2.4 mol H2/mol sugar * | 166.1 m3/t molasses | 998,440 | 165.8 | |
Bagasse | Acid hydrolysis route, sugar 2.5% (w/w) | 0.072 m3H2/kg of dry bagasse | 72 m3/t dry bagasse | 5,000,000 | 360 |
Water extraction route, sugar 1% (w/w) | 0.055 m3H2/kg of dry bagasse | 55 m3/t dry bagasse | 5,000,000 | 275 | |
Trash Water extraction route, sugar 1% (w/w) | Tops | 0.055 m3H2/kg of dry trash | 55 m3/t dry tops | 1,804,544 | 99.25 |
Leaves | 0.055 m3H2/kg of dry trash | 55 m3/t dry leaves | 2,122,268 | 116.7 |
mm3, kg | Energy Content MJ/kg | Total Energy GJ | Gain, AUD | ||
---|---|---|---|---|---|
Sugar | 1366.4; 116,144,000 | 142 | 16,492,448 | 64,815,320 | |
Molasses (53% sugar) | 165.8; 14,093,000 | 142 | 2,001,206 | 7,864,739 | |
H2 from bagasse, acid hydrolysis | 360; 30,600,000 | 142 | 4,345,200 | 17,076,636 | |
H2 from bagasse, water extraction | 275; 23,375,000 | 142 | 3,319,250 | 13,044,652 | |
H2 from Trash—tops, water extraction | 99.25; 8,440,000 | 142 | 1,198,480 | 4,710,026 | |
H2 from Trash—leaves, water extraction | 116.7; 9,920,000 | 142 | 1,408,640 | 5,535,955 | |
Solid left after fermentation | Energy, kJ/kg dry solid | Amount of dry solid, t (hemicellulose + lignin) | Total, GJ | Revenue | |
Bagasse, Water extraction | 17,659 | 2,592,000 | 45,772,128 | 179,884,463 | |
Trash, water extraction | Tops | 17,659 | 969,040 | 17,112,277 | 67,251,250 |
Leaves | 17,659 | 1,090,845 | 19,263,231 | 75,704,501 | |
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, and this means AUD 3.93 per GJ. |
Waste Type | Fuel Type | Methane Production, m3 Methane/Ton of Waste on Dry Weight Basis | Total Amount, t | Electricity Generated, kWh/m3 | Price, AUD/kWh; AUD/L | Value, AUD |
---|---|---|---|---|---|---|
Bagasse | Biogas | 74.8 | 5,000,000 | 2.1 | 0.1 | 78,540,000 |
Trash | 74.8 | 3,926,812 | 2.1 | 0.1 | 61,682,362 | |
Total | 140,222,362 | |||||
Bagasse | Ethanol | 0.255 | 5,000,000 | -- | 1.0 | 1,275,000,000 |
Trash | 0.255 | 3,926,812 | -- | 1.0 | 1,001,337,060 | |
Total | 2,276,337,060 | |||||
Overall Total | 2,416,559,422 |
Energy for Drying, kJ/kg Water | Total Energy for Drying, GJ | Recovered, kJ/kg (80%) | Total Recovered, GJ | Net Lost, GJ | |
---|---|---|---|---|---|
Dry Bagasse | 2783 | 13,915,000 | 2226.7 | 11,133,400 | 2,781,600 |
Amount, t | Energy Content, kJ/kg | Total, GJ | Lost Due to Drying GJ | Total, GJ | |
---|---|---|---|---|---|
Wet Bagasse | 10,000,000 | 7588 | 75,880,000 | --- | 75,880,000 |
Dry Bagasse | 5,000,000 | 17,659 | 88,295,000 | 2,781,600 | 85,513,400 |
Net energy gain from drying bagasse | 9,633,400 | ||||
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, and this means AUD 3.93 per GJ. The saving is around AUD 37,859,262 |
Amount, t | Energy Content, kJ/kg | Total, GJ | Lost Due to Drying GJ | Total, GJ | ||
---|---|---|---|---|---|---|
Wet trash | Tops | 4,748,800 | 4472 | 21,239,150 | --- | 21,239,150 |
Leaves | 2,337,300 | 15,417 | 36,036,421 | --- | 36,036,421 | |
Dry trash | Tops | 1,804,544 | 17,659 | 31,866,442 | 1,639,950 | 30,226,492 |
Leaves | 2,122,268 | 17,659 | 37,477,137 | 119,772 | 37,357,365 | |
Net energy gain from drying Trash | Tops | 8,987,342 | ||||
Leaves | 1,320,944 | |||||
One tonne of black coal can produce 28 GJ energy at a price of AUD 110, and this means AUD 3.93 per GJ. By collecting and burning the trash (tops), the revenue generated can be as much as AUD 35,320,254. By drying and burning the trash (leaves), the revenue can be increased by AUD 5,191,309. |
500 °C | 600 °C | 700 °C | 800 °C | 900 °C | ||
---|---|---|---|---|---|---|
Char, wt% | 45.4 | 41.9 | 32.9 | 27.6 | 26.4 | |
Tar, wt% | 22.1 | 22.8 | 24.1 | 20.9 | 20.6 | |
Gas, wt% | 32.5 | 35.3 | 43.0 | 51.5 | 53.1 | |
Gas, mole | H2 | -- | 3 | 42 | 49 | 42 |
CO | 8 | 10 | -- | -- | 19 | |
CH4 | 22 | 29 | 35 | 29 | 18 | |
CO2 | 70 | 56 | 23 | 22 | 21 | |
Butane | -- | 1 | -- | -- | -- | |
Ethane | -- | 1 | -- | -- | -- |
20 min | 40 min | 60 min | 80 min | 120 min | ||
---|---|---|---|---|---|---|
Char, wt% | 7 | |||||
Tar, wt% | 27 | |||||
Gas, wt% | 66 | |||||
Gas, mole | H2 | 52 | 54 | 57 | 59 | 60 |
CO | 19 | 19 | 18 | 17 | 16 | |
CH4 | 5 | 6 | 5 | 4 | 4 | |
CO2 | 24 | 21 | 20 | 20 | 20 | |
Butane | -- | -- | -- | -- | -- | |
Ethane | -- | -- | -- | -- | -- |
900 °C, kmole | Mwt, kg/kmole | Wt, kg | Wt % | ||
---|---|---|---|---|---|
Gas, mole | H2 | 42 | 2 | 84 | 4.6 |
CO | 19 | 28 | 532 | 29.1 | |
CH4 | 18 | 16 | 288 | 15.8 | |
CO2 | 21 | 44 | 924 | 50.5 | |
Butane | -- | -- | -- | -- | |
Ethane | -- | -- | -- | -- | |
100 | 1828 | 100 |
60 min, kmole | Mwt, kg/kmole | Wt, kg | Wt % | ||
---|---|---|---|---|---|
Gas, mole | H2 | 57 | 2 | 114 | 7.2 |
CO | 18 | 28 | 504 | 31.9 | |
CH4 | 5 | 16 | 80 | 5.1 | |
CO2 | 20 | 44 | 880 | 55.8 | |
Butane | -- | -- | -- | -- | |
Ethane | -- | -- | -- | -- | |
100 | 1578 | 100 |
Pyrolysis | Gasification | ||||||
---|---|---|---|---|---|---|---|
Wt% at 900 °C | Amount, kg/t dry Bagasse | Amount, kg/t wet Bagasse | Wt% at 900 °C and 60 min | Amount, kg/t Dry Bagasse | Amount, kg/t Wet Bagasse | ||
Char | 26.4 | 264 | 132 | 7 | 70 | 35 | |
Tar | 20.6 | 206 | 103 | 27 | 270 | 135 | |
Gas | 53.1 | 531 | 265.5 | 66 | 660 | 330 | |
Gas | H2 | 4.6 | 24.4 | 12.2 | 7.2 | 47.5 | 23.75 |
CO | 29.1 | 154.5 | 77.25 | 31.9 | 210.5 | 105.25 | |
CH4 | 15.8 | 83.9 | 41.95 | 5.1 | 33.7 | 16.85 | |
CO2 | 50.5 | 268.2 | 134.1 | 55.8 | 368.3 | 184.15 | |
Butane | -- | -- | -- | -- | -- | -- | |
Ethane | -- | -- | -- | -- | -- | -- |
Utilisation Method | Amount, kg/t Wet Bagasse | Total Amount, t | Energy Content, kJ/kg | Total Energy, GJ | Value, AUD |
---|---|---|---|---|---|
Pyrolysis at 900 °C for 1 h | |||||
Char (AUD 250/t) | 132 | 10,000,000 | -- | -- | 250,000,000 |
Tar | 103 | 22,100 | 22,763,000 | 89,458,000 | |
H2 | 12.2 | 142,000 | 17,324,000 | 68,083,320 | |
CO | 77.25 | 10,100 | 7,802,250 | 30,662,842 | |
CH4 | 41.95 | 55,500 | 23,282,250 | 91,499,242 | |
CO2 | 134.1 | -- | -- | -- | |
Total * | 529,700,000 | ||||
Gasification at 900 °C and 60 min | |||||
Char (AUD 250/t) | 35 | 10,000,000 | -- | -- | 87,500,000 |
Tar | 135 | --- | --- | --- | |
H2 | 23.75 | 142,000 | 33,725,000 | 132,539,250 | |
CO | 105.25 | 10,100 | 10,630,250 | 41,776,882 | |
CH4 | 16.85 | 55,500 | 9,351,750 | 36,752,377 | |
CO2 | 184.15 | -- | -- | -- | |
Total * | 298,568,000 |
Bagasse | Dry Solid, kg | Revenue, AUD | Rate, AUD/kg | |
---|---|---|---|---|
Bagasse | Pyrolysis | 5,000,000 | 529,700,000 | 106 |
Gasification | 5,000,000 | 298,568,000 | 60 | |
Trash | Rate, AUD/kg | Dry solid, kg | Revenue, AUD | |
Trash—Tops | Pyrolysis | 106 | 1,804,544 | 191,281,664 |
Gasification | 60 | 1,804,544 | 108,272,640 | |
Trash—Leaves | Pyrolysis | 106 | 2,122,268 | 224,960,408 |
Gasification | 60 | 2,122,268 | 127,336,080 |
Total Quantity, t | Fibre Content, % | Total Fibre, t | Fibre is Required to be Removed as Pith, % | Pulp Yield, % | Potential Pulp, t | |
---|---|---|---|---|---|---|
Bagasse | 10,000,000 | 13 | 1,300,000 | 35 | 45 | 438,750 |
Total quantity, t | Solid remained after removing the fibre, % | Total solid remained, t | Solid remained as pith | Solid remained based on converted yield, t | Total remained after removing the potential pulp, t | |
Solid remained, dry, wet | 10,000,000 | 37 | 3,700,000 | 455,000 | 250,250 | 4,405,250; 9,405,250 |
Product | Amount | Price | Total Revenue, AUD | ||
---|---|---|---|---|---|
Bagasse | Pulp * | 438,750 t | 1132 AUD/t ** | 496,665,000 | |
Wet Solid, fuel for the boiler (50% MC) | 9,405,250 t ***, 71,367,037 GJ | 3.93 AUD/GJ | 280,472,455 | ||
Total *** | 777,137,455 | ||||
Product | Production rate, kg/kg dry solid | Total, t | Total produced, t | Total revenue, AUD | |
Trash—tops | Pulp * | 0.088 | 1,804,544 | 158,799 | 179,761,455 |
dry Solid, fuel for the boiler | 0.88 | 1,804,544 | 1,587,998 | 110,206,904 | |
Total *** | 289,968,359 |
Products | Production, t/y | Fermentable Ethanol, % | Ethanol, t/Year | Energy Content, kJ/kg | Total Energy, GJ |
---|---|---|---|---|---|
Sugar | 4,360,000 | 48.4 | 2,110,240 | 29,677 | 62,625,592 |
Production, t/y | Price AUD/t | Total AUD | |||
Sugar | 4,360,000 | 390 * | 1,700,400,000 | ||
Based on AUD 3.93/GJ the total gain from converting sugar to ethanol will be around AUD 246,118,576/year or based on AUD 1/l ethanol, the revenue is around AUD 2,674,575,411/year |
Byproduct | Produced, Tone |
---|---|
Bagasse | 9575.87 |
Trash | 6804.3 |
Molasse | 955.92 |
Mill mud | 584.40–592.75 |
Property | Slow | Intermediate | Fast | Flash |
---|---|---|---|---|
Heating rate (°C/s) | 1.1–1 | 1–10 | 10–200 | >1000 |
Feed size (mm) | 5–50 | 1–5 | <1 | <0.5 |
Reaction temperature (°C) | 400–500 | 400–650 | 850–1250 | >1000 |
Vapor residence time (s) | 300–550 | 0.5–20 | 0.5–10 | <1 |
Feed water content (%) | Up to 40 | Up to 40 | <<10 | <<10 |
Biooil yield (%) | 20–50 | 35–50 | 60–75 | 60–75 |
Biochar yield (%) | 25–35 | 25–40 | 10–25 | 10–25 |
Gas yield (%) | 20–50 | 20–30 | 10–30 | 10–30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamawand, I.; da Silva, W.; Seneweera, S.; Bundschuh, J. Value Proposition of Different Methods for Utilisation of Sugarcane Wastes. Energies 2021, 14, 5483. https://doi.org/10.3390/en14175483
Hamawand I, da Silva W, Seneweera S, Bundschuh J. Value Proposition of Different Methods for Utilisation of Sugarcane Wastes. Energies. 2021; 14(17):5483. https://doi.org/10.3390/en14175483
Chicago/Turabian StyleHamawand, Ihsan, Wilton da Silva, Saman Seneweera, and Jochen Bundschuh. 2021. "Value Proposition of Different Methods for Utilisation of Sugarcane Wastes" Energies 14, no. 17: 5483. https://doi.org/10.3390/en14175483
APA StyleHamawand, I., da Silva, W., Seneweera, S., & Bundschuh, J. (2021). Value Proposition of Different Methods for Utilisation of Sugarcane Wastes. Energies, 14(17), 5483. https://doi.org/10.3390/en14175483