Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer
Abstract
1. Introduction
2. Methods
3. Results
3.1. Entrainer Selection
3.2. Process Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redel-Macías, M.D.; Leiva-Candia, D.E.; Soriano, J.A.; Herreros, J.M.; Cubero-Atienza, A.J.; Pinzi, S. Influence of short carbon-chain alcohol (ethanol and 1-propanol)/diesel fuel blends over diesel engine emissions. Energies 2021, 14, 1309. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, D.; Lapuerta, M.; German, L. Progress in the Use of Biobutanol Blends in Diesel Engines. Energies 2021, 14, 3215. [Google Scholar] [CrossRef]
- Lodi, G.; De Guido, G.; Pellegrini, L.A. Simulation and energy analysis of the ABE fermentation integrated with gas stripping. Biomass Bioenerg. 2018, 116, 227–235. [Google Scholar] [CrossRef]
- Sjulander, N.; Kikas, T. Origin, impact and control of lignocellulosic inhibitors in bioethanol production—A review. Energies 2020, 13, 4751. [Google Scholar] [CrossRef]
- Lodi, G.; De Guido, G.; Pellegrini, L. Recovery of butanol from ABE fermentation broth by gas stripping: Process simulation and techno-economic evaluation. In Proceedings of the 25th European Biomass Conference and Exhibition (EUBCE 2017), Stockholm, Sweden, 12–15 June 2017; pp. 1034–1041. [Google Scholar]
- De Guido, G.; Lodi, G.; Pellegrini, L. Study of the integrated product recovery by gas stripping for the ABE fermentation with a fed-batch fermenter. Chem. Eng. Trans. 2019, 74, 793–798. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, X.; Yi, M.; Wang, Y. Facile covalent crosslinking of zeolitic imidazolate framework/polydimethylsiloxane mixed matrix membrane for enhanced ethanol/water separation performance. ACS Sustain. Chem. Eng. 2020, 8, 12664–12676. [Google Scholar] [CrossRef]
- Rossetti, I.; Compagnoni, M.; De Guido, G.; Pellegrini, L.A.; Ramis, G.; Dzwigaj, S. Ethylene production from diluted bioethanol solutions. Can. J. Chem. Eng. 2017, 95, 1752–1759. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Chang, Y.; Zhong, C. Integrated High Water Affinity and Size Exclusion Effect on Robust Cu-Based Metal–Organic Framework for Efficient Ethanol–Water Separation. ACS Sustain. Chem. Eng. 2021, 9, 3195–3202. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Sun, Z.; Xie, S. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng. 2021, 15, 854–871. [Google Scholar] [CrossRef]
- Haris, A.; Irhamsyah, A.; Permatasari, A.D.; Desa, S.S.; Irfanita, R.; Wahyuni, S. Pervaporation membrane based on laterite zeolite-geopolymer for ethanol-water separation. J. Clean. Prod. 2020, 249, 119413. [Google Scholar]
- Widagdo, S.; Seider, W.D. Journal review. Azeotropic distillation. AIChE J. 1996, 42, 96–130. [Google Scholar] [CrossRef]
- Moussa, A.S.; Jiménez, L. Entrainer selection and systematic design of heterogeneous azeotropic distillation flowsheets. Ind. Eng. Chem. Res. 2006, 45, 4304–4315. [Google Scholar] [CrossRef]
- Cairns, B.P.; Furzer, I.A. Multicomponent three-phase azeotropic distillation. 2. Phase-stability and phase-splitting algorithms. Ind. Eng. Chem. Res. 1990, 29, 1364–1382. [Google Scholar] [CrossRef]
- Kraemer, K.; Harwardt, A.; Skiborowski, M.; Mitra, S.; Marquardt, W. Shortcut-based design of multicomponent heteroazeotropic distillation. Chem. Eng. Res. Des. 2011, 89, 1168–1189. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—I. Heterogeneous phase diagrams. Chem. Eng. Sci. 1990, 45, 1823–1836. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—II. Residue curve maps. Chem. Eng. Sci. 1990, 45, 1837–1843. [Google Scholar] [CrossRef]
- Pham, H.N.; Doherty, M.F. Design and synthesis of heterogeneous azeotropic distillations—III. Column sequences. Chem. Eng. Sci. 1990, 45, 1845–1854. [Google Scholar] [CrossRef]
- Prayoonyong, P.; Jobson, M. Flowsheet synthesis and complex distillation column design for separating ternary heterogeneous azeotropic mixtures. Chem. Eng. Res. Des. 2011, 89, 1362–1376. [Google Scholar] [CrossRef]
- Ryan, P.J.; Doherty, M.F. Design/optimization of ternary heterogeneous azeotropic distillation sequences. AIChE J. 1989, 35, 1592–1601. [Google Scholar] [CrossRef]
- Chien, I.; Wang, C.; Wong, D. Dynamics and control of a heterogeneous azeotropic distillation column: Conventional control approach. Ind. Eng. Chem. Res. 1999, 38, 468–478. [Google Scholar] [CrossRef]
- Chien, I.-L.; Chen, W.-H.; Chang, T.-S. Operation and decoupling control of a heterogeneous azeotropic distillatin column. Comput. Chem. Eng. 2000, 24, 893–899. [Google Scholar] [CrossRef]
- Kovach, J., III; Seider, W. Heterogeneous azeotropic distillation: Experimental and simulation results. AIChE J. 1987, 33, 1300–1314. [Google Scholar] [CrossRef]
- Luyben, W.L. Control of a multiunit heterogeneous azeotropic distillation process. AIChE J. 2006, 52, 623–637. [Google Scholar] [CrossRef]
- Luyben, W.L. Control of the heterogeneous azeotropic n-butanol/water distillation system. Energy Fuels 2008, 22, 4249–4258. [Google Scholar] [CrossRef]
- Wang, C.; Wong, D.; Chien, I.; Shih, R.; Liu, W.; Tsai, C. Critical reflux, parametric sensitivity, and hysteresis in azeotropic distillation of isopropyl alcohol+ water+ cyclohexane. Ind. Eng. Chem. Res. 1998, 37, 2835–2843. [Google Scholar] [CrossRef]
- Cairns, B.P.; Furzer, I.A. Multicomponent three-phase azeotropic distillation. 3. modern thermodynamic models and multiple solutions. Ind. Eng. Chem. Res. 1990, 29, 1383–1395. [Google Scholar] [CrossRef]
- Font, A.; Asensi, J.C.; Ruiz, F.; Gomis, V. Application of isooctane to the dehydration of ethanol. Design of a column sequence to obtain absolute ethanol by heterogeneous azeotropic distillation. Ind. Eng. Chem. Res. 2003, 42, 140–144. [Google Scholar] [CrossRef]
- Gomis, V.; Pedraza, R.; Francés, O.; Font, A.; Asensi, J.C. Dehydration of ethanol using azeotropic distillation with isooctane. Ind. Eng. Chem. Res. 2007, 46, 4572–4576. [Google Scholar] [CrossRef]
- Pienaar, C. Evaluation of Entrainers for the Dehydration of C2 and C3 Alcohols Via Azeotropic Distillation. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012. [Google Scholar]
- Zhao, L.; Lyu, X.; Wang, W.; Shan, J.; Qiu, T. Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27–37. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Saquete, M.D. Vapour–liquid–liquid and vapour–liquid equilibrium of the system water+ ethanol+ heptane at 101.3 kPa. Fluid Ph. Equilibria 2006, 248, 206–210. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Pedraza, R.; Saquete, M. Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the water–ethanol–hexane system. Fluid Ph. Equilibria 2007, 259, 66–70. [Google Scholar] [CrossRef]
- Pequenin, A.; Asensi, J.C.; Gomis, V. Isobaric vapor− liquid− liquid equilibrium and vapor− liquid equilibrium for the quaternary system water− ethanol− cyclohexane− isooctane at 101.3 kPa. J. Chem. Eng. Data 2010, 55, 1227–1231. [Google Scholar] [CrossRef]
- Pequenín, A.; Asensi, J.C.; Gomis, V. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water+ethanol + cyclohexane + heptane) at 101.3 kPa. J. Chem. Thermodyn. 2011, 43, 1097–1103. [Google Scholar] [CrossRef]
- Pequenín, A.; Asensi, J.C.; Gomis, V. Vapor–liquid–liquid equilibrium and vapor–liquid equilibrium for the quaternary system water–ethanol–cyclohexane–toluene and the ternary system water–cyclohexane–toluene. Isobaric experimental determination at 101.3 kPa. Fluid Ph. Equilibria 2011, 309, 62–67. [Google Scholar] [CrossRef]
- Chien, I.-L.; Zeng, K.-L.; Chao, H.-Y. Design and control of a complete heterogeneous azeotropic distillation column system. Ind. Eng. Chem. Res. 2004, 43, 2160–2174. [Google Scholar] [CrossRef]
- Arifin, S.; Chien, I.-L. Combined preconcentrator/recovery column design for isopropyl alcohol dehydration process. Ind. Eng. Chem. Res. 2007, 46, 2535–2543. [Google Scholar] [CrossRef]
- Luyben, W.L.; Chien, I.-L. Design and Control of Distillation Systems for Separating Azeotropes; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Cho, J.; Jeon, J.-K. Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration. Korean J. Chem. Eng. 2006, 23, 1–7. [Google Scholar] [CrossRef]
- Arda, N.; Sayar, A.A. Liquid-liquid equilibrium of water+ 2-propanol+ 2, 2, 4-trimethylpentane ternary at 293.2 ± 0.1 K. Fluid Ph. Equilibria 1992, 73, 129–138. [Google Scholar] [CrossRef]
- Otero, J.; Comesana, J.; Correa, J.; Correa, A. Liquid−liquid equilibria of the system water+ 2-propanol+ 2, 2, 4-trimethylpentane at 25 C. J. Chem. Eng. Data 2000, 45, 898–901. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Saquete, M.; García-Cano, J. LLE, VLE and VLLE data for the water–n-butanol–n-hexane system at atmospheric pressure. Fluid Ph. Equilibria 2012, 316, 135–140. [Google Scholar] [CrossRef]
- Pienaar, C.; Schwarz, C.E.; Knoetze, J.H.; Burger, A.J. Vapor–liquid–liquid equilibria measurements for the dehydration of ethanol, isopropanol, and n-propanol via azeotropic distillation using dipe and isooctane as entrainers. J. Chem. Eng. Data 2013, 58, 537–550. [Google Scholar] [CrossRef]
- Gomis, V.; Font, A.; Pedraza, R.; Saquete, M. Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the system water+ ethanol+ cyclohexane. Fluid Ph. Equilibria 2005, 235, 7–10. [Google Scholar] [CrossRef]
- Gomis, V.; Pequenín, A.; Asensi, J.C. Isobaric vapor–liquid–liquid equilibrium and vapor–liquid equilibrium for the system water–ethanol-1, 4-dimethylbenzene at 101.3 kPa. Fluid Ph. Equilibria 2009, 281, 1–4. [Google Scholar] [CrossRef]
- Gomis, V.; Pequenín, A.; Asensi, J.C. A review of the isobaric (vapor + liquid + liquid) equilibria of multicomponent systems and the experimental methods used in their investigation. J. Chem. Thermodyn. 2010, 42, 823–828. [Google Scholar] [CrossRef]
- Hölscher, I.; Schneider, G.; Ott, J. Liquid-liquid phase equilibria of binary mixtures of methanol with hexane, nonane and decane at pressures up to 150 MPa. Fluid Ph. Equilibria 1986, 27, 153–169. [Google Scholar] [CrossRef]
- Hwang, I.-C.; Park, S.-J.; Choi, J.-S. Liquid–liquid equilibria for the binary system of di-isopropyl ether (DIPE)+ water in between 288.15 and 323.15 K and the ternary systems of DIPE + water + C1–C4 alcohols at 298.15 K. Fluid Ph. Equilibria 2008, 269, 1–5. [Google Scholar] [CrossRef]
- Lladosa, E.; Montón, J.B.; Burguet, M.; de la Torre, J. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa. J. Chem. Thermodyn. 2008, 40, 867–873. [Google Scholar] [CrossRef]
- Rastegar, R.; Jessen, K. Measurement and Modeling of Liquid−Liquid Equilibrium for Ternary and Quaternary Mixtures of Water, Methanol, 2-Propanol, and 2,2,4-Trimethylpentane at 293.2 K. J. Chem. Eng. Data 2011, 56, 278–281. [Google Scholar] [CrossRef]
- Sayar, A.A. Liquid-liquid equilibria of some water + 2-propanol + solvent ternaries. J. Chem. Eng. Data 1991, 36, 61–65. [Google Scholar] [CrossRef]
- Tamura, K.; Chen, Y.; Tada, K.; Yamada, T. Liquid–liquid equilibria for quaternary mixtures of water, ethanol, and 2,2,4-trimethylpentane with fuel additives. Fluid Ph. Equilibria 2000, 171, 115–126. [Google Scholar] [CrossRef]
- Verhoeye, L.A.J. System cyclohexane-2-propanol-water. J. Chem. Eng. Data 1968, 13, 462–467. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Ying, A. Measurement and Calculation of Liquid–Liquid Equilibria of Ternary and Quaternary Systems Containing Water, Propan-1-ol, and 2,2,4-Trimethylpentane (TMP) with 2,2′-Oxybis(propane) (DIPE) or Dimethyl Carbonate (DMC). J. Chem. Eng. Data 2011, 56, 4466–4472. [Google Scholar] [CrossRef]
- Asensi, J.C.; Moltó, J.; del Mar Olaya, M.a.; Ruiz, F.; Gomis, V. Isobaric vapour–liquid equilibria data for the binary system 1-propanol+1-pentanol and isobaric vapour–liquid–liquid equilibria data for the ternary system water+1-propanol+1-pentanol at 101.3 kPa. Fluid Ph. Equilibria 2002, 200, 287–293. [Google Scholar] [CrossRef]
- Fernández, M.J.; Gomis, V.; Ramos, M.; Ruíz, F. Influence of the Temperature on the Liquid−Liquid Equilibrium of the Ternary System 1-Pentanol + 1-Propanol + Water. J. Chem. Eng. Data 2000, 45, 1053–1054. [Google Scholar] [CrossRef]
- Fernández-Torres, M.J.; Gomis-Yagües, V.; Ramos-Nofuentes, M.; Ruíz-Beviá, F. The influence of the temperature on the liquid–liquid equilibrium of the ternary system 1-pentanol–ethanol–water. Fluid Ph. Equilibria 1999, 164, 267–273. [Google Scholar] [CrossRef]
- Loras, S.; Fernández-Torres, M.J.; Gomis-Yagües, V.; Ruíz-Beviá, F. Isobaric vapor–liquid equilibria for the system 1-pentanol–1-propanol–water at 101.3 kPa. Fluid Ph. Equilibria 2001, 180, 205–210. [Google Scholar] [CrossRef]
- Mara, K.; Bhethanabotla, V.R.; Campbell, S.W. Total pressure measurements for 1-propanol + 1-pentanol, 1-propanol + 2-pentanol, 2-propanol + 1-pentanol, and 2-propanol + 2-pentanol at 313.15 K. Fluid Ph. Equilibria 1997, 127, 147–153. [Google Scholar] [CrossRef]
- AspenTech. Aspen Plus®; AspenTech: Burlington, MA, USA, 2019. [Google Scholar]
- Gomis, V.; Font, A.; Saquete, M.D. Homogeneity of the water+ ethanol+ toluene azeotrope at 101.3 kPa. Fluid Ph. Equilibria 2008, 266, 8–13. [Google Scholar] [CrossRef][Green Version]
- Gomis, V.; Ruiz, F.; Asensi, J.C. The application of ultrasound in the determination of isobaric vapour–liquid–liquid equilibrium data. Fluid Ph. Equilibria 2000, 172, 245–259. [Google Scholar] [CrossRef]
- Magnussen, T.; Michelsen, M.; Fredenslund, A. Azeotropic distillation using UNIFAC. Inst. Chem. Eng. Symp. Ser. 1979, 56, 1–4. [Google Scholar]
- Newsham, D.; Vahdat, N. Prediction of vapour-liquid-liquid equilibria from liquid-liquid equilibria Part I: Experimental results for the systems methanol—water—n-but. Chem. Eng. J. 1977, 13, 27–31. [Google Scholar] [CrossRef]
- Iwakabe, K.; Kosuge, H. Isobaric vapor–liquid–liquid equilibria with a newly developed still. Fluid Ph. Equilibria 2001, 192, 171–186. [Google Scholar] [CrossRef]
- Van Zandijcke, F.; Verhoeye, L. The vapour-liquid equilibrium of ternary systems with limited miscibility at atmospheric pressure. J. Appl. Chem. Biotechnol. 1974, 24, 709–729. [Google Scholar] [CrossRef]
- Lee, L.-S.; Chen, W.-C.; Huang, J.-F. Experiments and correlations of phase equilibria of ethanol-ethyl acetate-water ternary mixture. J. Chem. Eng. Jpn. 1996, 29, 427–438. [Google Scholar] [CrossRef]
- Donis, I.R.; Esquijarosa, J.A.; Gerbaud, V.; Joulia, X. Heterogeneous batch-extractive distillation of minimum boiling azeotropic mixtures. AIChE J. 2003, 49, 3074–3083. [Google Scholar] [CrossRef]
- Younis, O.; Pritchard, D.; Anwar, M. Experimental isobaric vapour–liquid–liquid equilibrium data for the quaternary systems water (1)–ethanol (2)–acetone (3)–n-butyl acetate (4) and water (1)–ethanol (2)–acetone (3)–methyl ethyl ketone (4) and their partially miscible-constituent ternaries. Fluid Ph. Equilibria 2007, 251, 149–160. [Google Scholar] [CrossRef]
- Prokopakis, G.J.; Seider, W.D.; Ross, B. Azeotropic distillation towers with two liquid phases. In Foundations of Computer-Aided Chemical Process Design, Proceedings of the International Conference, Held at New England College, Henniker, New Hampshire, 6–11 July 1980; American Institute of Chemical Engineers: New York, NY, USA, 1981; p. 239. [Google Scholar]
- Font, A.; Asensi, J.C.; Ruiz, F.; Gomis, V. Isobaric Vapor− Liquid and Vapor− Liquid− Liquid equilibria data for the system water+ isopropanol+ isooctane. J. Chem. Eng. Data 2004, 49, 765–767. [Google Scholar] [CrossRef]
- Aicher, T.; Bamberger, T.; Schluender, E.-U. Liquid-liquid and vapor-liquid phase equilibria for 1-butanol+ water+ 2-propanol at ambient pressure. J. Chem. Eng. Data 1995, 40, 696–698. [Google Scholar] [CrossRef]
Entrainer | Literature Source | Focus of the Study |
---|---|---|
benzene | Cairns and Furzer [27] | New simulation method for three-phase distillation using a modified phase-stability analysis |
Luyben [24] | Process simulation | |
Pienaar [30] | Process simulation | |
cyclohexane | Gomis et al. [45] | VLE and VLLE data |
toluene | Gomis et al. [62] | VLE and VLLE data |
Zhao et al. [31] | Process simulation | |
isooctane or 2,2,4-trimethylpentane | Cairns and Furzer [27] | New simulation method for three-phase distillation using a modified phase-stability analysis |
Font et al. [28] | VLE and VLLE data | |
Gomis et al. [29] | Analysis of process viability by an experimental procedure and an equilibrium-model-based simulation | |
cyclohexane + toluene | Pequenín et al. [36] | VLE and VLLE data |
cyclohexane + isooctane | Pequenín et al. [34] | VLE and VLLE data |
cyclohexane + heptane | Pequenín et al. [35] | VLE and VLLE data |
diisopropyl ether (DIPE) | Hwang et al. [49] | LLE data |
Pienaar [30] | VLE and VLLE data; process simulation | |
Pienaar et al. [44] | VLE and VLLE data | |
diethyl ether | Gomis et al. [63] | VLLE data |
pentane | Magnussen et al. [64] 1 | Simulation method 1 |
hexane | Gomis et al. [33] | VLE and VLLE data |
n-heptane | Gomis et al. [32] | VLE and VLLE data |
p-xylene | Gomis et al. [46] | VLE and VLLE data |
n-butanol | Newsham and Vahdat [65] | VLE data |
Gomis et al. [63] | VLLE data | |
Iwakabe and Kosuge [66] | VLLE data | |
2-butanol | Iwakabe and Kosuge [66] | VLLE data |
1-pentanol | Fernandez-Torres et al. [58] | LLE data |
ethyl acetate | Van Zandijcke and Verhoeye [67] | VLE data |
Lee et al. [68] | VLE and VLLE data | |
Gomis et al. [63] | VLLE data | |
Donis et al. [69] | Feasibility of heterogeneous batch-extractive distillation | |
n-butyl acetate | Younis et al. [70] | VLLE data |
methyl ethyl ketone | Younis et al. [70] | VLLE data |
Entrainer | Literature Source | Focus of the Study |
---|---|---|
benzene | Cho and Jeon [40] | Process simulation |
cyclohexane | Verhoeye [54] | VLE and LLE data |
Prokopakis et al. [71] 1 | Simulation method 1 | |
Wang et al. [26] | Experiment using a laboratory-scale sieve plate distillation column; dynamic simulation | |
Chien et al. [21] | Dynamics and control of a HAD column | |
Chien et al. [22] | Operation and decoupling control of a heterogeneous azeotropic distillation column | |
Chien et al. [37] | Design and control of a complete HAD column | |
Arifin and Chien [38] | Combined preconcentrator/recovery column design | |
Kraemer et al. [15] | Shortcut-based design | |
Isooctane or 2,2,4-trimethylpentane | Arda and Sayar [41] | LLE data |
Otero et al. [42] | LLE data | |
Font et al. [72] | VLE and VLLE data | |
Rastegar and Jessen [51] | LLE data | |
This work | Process simulation | |
diisopropylether (DIPE) | Hwang et al. [49] | LLE data |
Lladosa et al. [50] | VLLE data | |
Pienaar [30] | Process simulation | |
dichloromethane | Sayar [52] | LLE data |
1,2-dichloroethane | Sayar [52] | LLE data |
2-methylbutyl acetate | Sayar [52] | LLE data |
1-butanol | Aicher et al. [73] | VLE and LLE data |
1-pentanol | Sayar [52] | LLE data |
phenylmethanol | Sayar [52] | LLE data |
cyclohexanol | Sayar [52] | LLE data |
1-methylcyclohexanol | Sayar [52] | LLE data |
dibenzyl ether | Sayar [52] | LLE data |
octanenitrile | Sayar [52] | LLE data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Guido, G.; Monticelli, C.; Spatolisano, E.; Pellegrini, L.A. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies 2021, 14, 5471. https://doi.org/10.3390/en14175471
De Guido G, Monticelli C, Spatolisano E, Pellegrini LA. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies. 2021; 14(17):5471. https://doi.org/10.3390/en14175471
Chicago/Turabian StyleDe Guido, Giorgia, Chiara Monticelli, Elvira Spatolisano, and Laura Annamaria Pellegrini. 2021. "Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer" Energies 14, no. 17: 5471. https://doi.org/10.3390/en14175471
APA StyleDe Guido, G., Monticelli, C., Spatolisano, E., & Pellegrini, L. A. (2021). Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies, 14(17), 5471. https://doi.org/10.3390/en14175471