Star Wars? Space Weather and Electricity Market: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Space Weather
2.1.1. Solar Activity
2.1.2. Geomagnetic Activity
2.2. Space Weather and Electricity Market
3. Theory
3.1. Temperature Channel
3.2. Global Navigation Satellite System (GNSS) Channel
3.3. Power Grid and Pipeline Channel
3.4. Space Weather and Consumption Rate of Fossil Power Planet
4. Design
4.1. Data
4.1.1. Independent Variables
4.1.2. Dependent Variables
4.2. Model
5. Main Result
5.1. Space Weather and Power Demand
5.2. Space Weather and Revenue of Power Station
5.3. Space Weather and Coal Consumption Rate of Fossil Planet
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eastwood, J.P.; Biffis, E.; Hapgood, M.A.; Green, L.; Bisi, M.M.; Bentley, R.D.; Wicks, R.; McKinnell, L.-A.; Gibbs, M.; Burnett, C. The Economic Impact of Space Weather: Where Do We Stand? Risk Anal. 2017, 37, 206–218. [Google Scholar] [CrossRef]
- Love, J.J.; Hayakawa, H.; Cliver, E.W. Intensity and Impact of the New York Railroad Superstorm of May 1921. Space Weather 2019, 17, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Boteler, D. The super storms of August/September 1859 and their effects on the telegraph system. Adv. Space Res. 2006, 38, 159–172. [Google Scholar] [CrossRef]
- Boteler, D.H. A 21st Century View of the March 1989 Magnetic Storm. Space Weather 2019, 17, 1427–1441. [Google Scholar] [CrossRef]
- Tritakis, V.; Korbakis, G.; Nastos, P.; Paliatsos, A.; Pisanko, Y. Ozone destruction by solar electrons in relation to solar variability and the terrestrial latitude. Adv. Space Res. 2008, 43, 659–664. [Google Scholar] [CrossRef]
- Rowland, D.E.; Wygant, J.R. Dependence of the large-scale, inner magnetospheric electric field on geomagnet-ic activity. J. Geophys. Res. Space Phys. 1998, 103, 14959–14964. [Google Scholar] [CrossRef]
- Mursula, K.; Tanskanen, E.; Love, J. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.F.; St Cyr, O.C. Space weather and the electricity market: An initial assessment. Space Weather 2004, 2. [Google Scholar] [CrossRef]
- Lockwood, M.; Fröhlich, C. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 2447–2460. [Google Scholar] [CrossRef]
- Foukal, P.; Fröhlich, C.; Spruit, H.; Wigley, T.M.L. Variations in solar luminosity and their effect on the Earth’s climate. Nature 2006, 443, 161–166. [Google Scholar] [CrossRef]
- Zherebtsov, G.; Kovalenko, V.; Molodykh, S.; Kirichenko, K. Solar variability manifestations in weather and climate characteristics. J. Atmos. Solar Terr. Phys. 2018, 182, 217–222. [Google Scholar] [CrossRef]
- Ahern, K. Eyes on the Skies. Science 2000, 290, 473. [Google Scholar]
- Seppälä, A.; Lu, H.; Clilverd, M.A.; Rodger, C. Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. J. Geophys. Res. Atmos. 2013, 118, 2169–2183. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, A.; Verronen, P.T.; Clilverd, M.A.; Randall, C.E.; Tamminen, J.; Sofieva, V.; Backman, L.; KYRöLä, E. Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Baumgaertner, A.J.G.; Seppälä, A.; Jöckel, P.; Clilverd, M.A. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys. 2011, 11, 4521–4531. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.M.; Chisham, G.; Freeman, M.P. The interplanetary magnetic field influences mid-latitude surface at-mospheric pressure. Environ. Res. Lett. 2013, 8, 045001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liao, H.; Mi, Z. Climate impacts: Temperature and electricity consumption. Nat. Hazards 2019, 99, 1259–1275. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers. Manag. 2007, 48, 1737–1750. [Google Scholar] [CrossRef]
- Bessec, M.; Fouquau, J. The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach. Energy Econ. 2008, 30, 2705–2721. [Google Scholar] [CrossRef] [Green Version]
- Moral-Carcedo, J.; Vicéns-OTERO, J. Modelling the non-linear response of Spanish electricity demand to tem-perature variations. Energy Econ. 2005, 27, 477–494. [Google Scholar] [CrossRef]
- Sailor, D.J.; MUñOZ, J.R. Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states. Energy 1997, 22, 987–998. [Google Scholar] [CrossRef]
- Psiloglou, B.; Giannakopoulos, C.; Majithia, S.; Petrakis, M. Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment. Energy 2009, 34, 1855–1863. [Google Scholar] [CrossRef]
- Ahmed, T.; Muttaqi, K.; Agalgaonkar, A. Climate change impacts on electricity demand in the State of New South Wales, Australia. Appl. Energy 2012, 98, 376–383. [Google Scholar] [CrossRef]
- Mannix, C.R.; Belcher, D.P.; Cannon, P.; Angling, M.J. Using GNSS signals as a proxy for SAR signals: Correcting ionospheric defocusing. Radio Sci. 2016, 51, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D. Combining GPS measurements and IRI model val-ues for space weather specification. Adv. Space Res. 2002, 29, 949–958. [Google Scholar] [CrossRef]
- Thomsen, M.F.; Denton, M.H.; Lavraud, B.; Bodeau, M. Statistics of plasma fluxes at geosynchronous orbit over more than a full solar cycle. Space Weather 2007, 5. [Google Scholar] [CrossRef] [Green Version]
- Andalsvik, Y.L.; Jacobsen, K.S. Observed high-latitude GNSS disturbances during a less-than-minor geomag-netic storm. Radio Sci. 2014, 49, 1277–1288. [Google Scholar] [CrossRef]
- Molinski, T.S. Why utilities respect geomagnetically induced currents. J. Atmos. Solar Terr. Phys. 2002, 64, 1765–1778. [Google Scholar] [CrossRef]
- Ahluwalia, H.S. North–south excess of hemispheric sunspot numbers and cosmic ray asymmetric solar modula-tion. Adv. Space Res. 2015, 56, 2645–2648. [Google Scholar] [CrossRef]
- Xuzhu, D.; Yilu, L.; Kappenman, J.G. Comparative analysis of exciting current harmonics and reactive power con-sumption from GIC saturated transformers. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 28 January–1 February 2001; Volume 1, pp. 318–322. [Google Scholar]
- Hansen, H.; Johansen, S. Some tests for parameter constancy in cointegrated VAR-models. Econ. J. 1999, 2, 306–333. [Google Scholar] [CrossRef]
Lag | LL | LR | df | P | FPE | AIC |
---|---|---|---|---|---|---|
0 | −725.922 | - | - | - | 790.165 | 15.1859 |
1 | −639.735 | 172.37 | 9 | 0.000 | 158.272 | 13.5778 |
2 | −628.913 | 21.643 | 9 | 0.010 | 152.476 | 13.5399 |
3 | −616.567 | 24.692 * | 9 | 0.003 | 142.422 * | 13.4701 * |
4 | −613.411 | 6.3116 | 9 | 0.708 | 161.305 | 13.5919 |
Equation | Exluded | F | Df | df_r | Prob > F |
---|---|---|---|---|---|
Social | vsw | 2.6217 * | 3 | 87 | 0.0557 |
Social | dst | 3.5479 ** | 3 | 87 | 0.0178 |
Social | ALL | 1.9913 * | 3 | 87 | 0.0755 |
Lag | LL | LR | df | P | FPE | AIC |
---|---|---|---|---|---|---|
0 | −722.57 | - | - | - | 736.867 | 15.116 |
1 | −670.061 | 105.02 | 9 | 0.000 | 297.712 | 14.2096 |
2 | −658.468 | 23.187 | 9 | 0.006 | 282.233 | 14.1556 |
3 | −640.306 | 36.325 * | 9 | 0.000 | 233.538 * | 13.9647 * |
4 | −638.157 | 4.297 | 9 | 0.891 | 270.11 | 14.1074 |
Equation | Exluded | F | Df | df_r | Prob > F |
---|---|---|---|---|---|
Secondary | vsw | 4.7163 *** | 3 | 87 | 0.0043 |
Secondary | dst | 4.4677 *** | 3 | 87 | 0.0058 |
Secondary | ALL | 2.893 ** | 3 | 87 | 0.0128 |
Lag | LL | LR | df | P | FPE | AIC |
---|---|---|---|---|---|---|
0 | −722.764 | - | - | - | 739.854 | 15.1201 |
1 | −671.128 | 103.27 | 9 | 0.000 | 304.4 | 14.2318 |
2 | −659.556 | 23.143 | 9 | 0.006 | 288.704 | 14.1783 |
3 | −641.325 | 36.462 * | 9 | 0.000 | 238.552 * | 13.9859 * |
4 | −639.152 | 4.346 | 9 | 0.887 | 275.769 | 14.1282 |
Equation | Exluded | F | Df | df_r | Prob > F |
---|---|---|---|---|---|
Industry | vsw | 4.7454 *** | 3 | 87 | 0.0041 |
Industry | dst | 4.4919 *** | 3 | 87 | 0.0056 |
Industry | ALL | 2.908 ** | 6 | 87 | 0.0124 |
Lag | LL | LR | df | P | FPE | AIC |
---|---|---|---|---|---|---|
0 | −841.387 | - | - | - | 108,102 | 20.1045 |
1 | −788.909 | 104.96 | 9 | 0.000 | 38,401.1 | 19.0693 |
2 | −779.189 | 19.44 * | 9 | 0.022 | 37,784.2 * | 19.0521 * |
3 | −775.806 | 6.7651 | 9 | 0.662 | 43,288.3 | 19.1859 |
4 | −768.203 | 15.206 | 9 | 0.085 | 44,937 | 19.2191 |
Equation | Exluded | F | Df | df_r | Prob > F |
---|---|---|---|---|---|
Revenue | vsw | 0.49033 | 2 | 79 | 0.6143 |
Revenue | dst | 2.8542 * | 2 | 79 | 0.0636 |
Revenue | ALL | 2.0503 | 4 | 79 | 0.0953 |
Lag | LL | LR | df | P | FPE | AIC |
---|---|---|---|---|---|---|
0 | −1725.11 | - | - | - | 1.5 × 107 | 25.045 |
1 | −1418.55 | 613.11 | 9 | 0.000 | 202,615 | 20.7326 |
2 | −1408.24 | 20.627 | 9 | 0.014 | 198,836 * | 20.7136 * |
3 | −1403.62 | 9.2371 | 9 | 0.416 | 211,978 | 20.7771 |
4 | −1393.85 | 19.549 * | 9 | 0.021 | 209,804 | 20.7659 |
Equation | Exluded | chi2 | df | Prob > chi2 |
---|---|---|---|---|
Coal | Vsw | 3.3318 | 2 | 0.189 |
Coal | Dst | 5.7224 * | 2 | 0.057 |
Coal | ALL | 6.7428 | 4 | 0.150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; You, Z.; Gong, M.; Cheng, J. Star Wars? Space Weather and Electricity Market: Evidence from China. Energies 2021, 14, 5281. https://doi.org/10.3390/en14175281
Wu T, You Z, Gong M, Cheng J. Star Wars? Space Weather and Electricity Market: Evidence from China. Energies. 2021; 14(17):5281. https://doi.org/10.3390/en14175281
Chicago/Turabian StyleWu, Tong, Zhe You, Mengqi Gong, and Jinhua Cheng. 2021. "Star Wars? Space Weather and Electricity Market: Evidence from China" Energies 14, no. 17: 5281. https://doi.org/10.3390/en14175281
APA StyleWu, T., You, Z., Gong, M., & Cheng, J. (2021). Star Wars? Space Weather and Electricity Market: Evidence from China. Energies, 14(17), 5281. https://doi.org/10.3390/en14175281