Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling Site
2.2. Amendments
2.3. Greenhouse Experiment Setup
2.4. Soil Analyses
2.5. Determination of the Heavy Metal Contents in Plants
2.6. Statistical Analysis
3. Results
3.1. Above-Ground Parts Biomass of Dactylis Glomerata L.
3.2. Effect of BFS and CS on the Distribution of Heavy Metals in Dactylis Glomerata L.
3.3. Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Chauhan, A.; Arora, S.; Tripathi, A.; Alghanem, S.S.S.; Khan, K.A.; Ghramh, H.A.; Özdemir, A.; Ansari, M.J. Chemical analysis of trace metal contamination in the air of industrial area of Gajraula (U.P) India. J. King Saud. Univ. Sci. 2020, 32, 1106–1110. [Google Scholar] [CrossRef]
- Nejad, Z.D.; Rezania, S.; Jung, M.C.; Al-Ghamdi, A.A.; El-Zaher, M.A.; Elshikh, M.S. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 2021, 271, 29538. [Google Scholar]
- Saha, N.; Rahman, M.S. Multivariate statistical analysis of metal contamination in surface water around Dhaka export processing industrial zone, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2018, 10, 206–211. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Radziemska, M. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fres. Environ. Bull. 2013, 22, 979–986. [Google Scholar]
- Mudgal, V.; Madaan, N.; Mudgal, A.; Singh, R.; Mishra, S. Effect of toxic metals on human health. Open. Nutraceut J. 2010, 3, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Pueffel, C.; Haase, D.; Priess, J.A. Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosyst. Serv. 2018, 30, 73–85. [Google Scholar] [CrossRef]
- Kowarik, I. Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Kowarik, I. Herbert Sukopp—An inspiring pioneer in the field of urban ecology. Urban Ecosyst. 2020, 23, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, D.; Álvarez-Robles, M.J.; Fiorentino, N.; Fagnano, M.; Clemente, R. Use of Brassica juncea and Dactylis glomerata for the phytostabilization of mine soils amended with compost or biochar. Chemosphere 2020, 260, 127661. [Google Scholar] [CrossRef]
- Rola, K.; Lenart-Boroń, A.; Boroń, P.; Osyczka, P. Heavy-metal pollution induces changes in the genetic composition and anatomical properties of photobionts in pioneer lichens colonising post-industrial habitat. Sci. Total Environ. 2021, 750, 141439. [Google Scholar] [CrossRef] [PubMed]
- Scattolin, M.; Peuble, S.; Pereira, F.; Paran, F.; Moutte, J.; Menad, N.; Faure, O. Aided-phytostabilization of steel slag dumps: The key-role of pH adjustment in decreasing chromium toxicity and improving manganese, phosphorus and zinc phytoavailability. J. Hazard. Mat. 2021, 405, 124225. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, A.M.K.; Nguyen, D.; Oustriere, N.; Burken, J.G. High throughput screening of native species for tailings eco-restoration using novel computer visualization for plant phenotyping. Sci. Total Environ. 2021, 780, 146490. [Google Scholar] [CrossRef]
- Oge, M.; Ozkan, D.; Celik, M.B.; Gok, M.S.; Karaoglanli, A.C. An Overview of Utilization of Blast Furnace and Steelmaking Slag in Various Applications. Mat. Today Proc. 2019, 11, 516–525. [Google Scholar] [CrossRef]
- Nunes, V.A.; Borges, P.H.R. Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Constr. Build. Mater. 2021, 281, 22605. [Google Scholar]
- Singh, N.; Singh, S.P. Electrical resistivity of self-consolidating concretes prepared with reused concrete aggregates and blended cements. J. Build. Eng. 2019, 25, 100780. [Google Scholar] [CrossRef]
- Coelho, A.; de Brito, J. Distribution of materials in construction and demolition waste in Portugal. Waste Manag. Res. 2011, 29, 843–853. [Google Scholar] [CrossRef]
- Liew, K.M.; Sojobi, A.O.; Zhang, L.W. Green concrete: Prospects and challenges. Constr. Build. Mater. 2017, 156, 1063–1095. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. An overview of geopolymers derived from industrial by-products. Constr. Build. Mater. 2016, 127, 183–198. [Google Scholar] [CrossRef]
- Dash, M.K.; Patro, S.K.; Rath, A.K. Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete–A review. Int. J. Sustain. Built Environ. 2016, 5, 484–516. [Google Scholar] [CrossRef] [Green Version]
- Rashad, A.M. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. Int. J. Sustain. Built. Environ. 2016, 5, 46–82. [Google Scholar] [CrossRef] [Green Version]
- Anon. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/islagmyb02.pdf (accessed on 7 October 2017).
- Strzałkowska, E. Charakterystyka Właściwości Fizykochemicznych I Mineralogicznych Wybranych Ubocznych Produktów Spalania Węgla; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2011. (In Polish) [Google Scholar]
- Regulation of the Minister of the Environment on September 2016 on the Standards of the Soil Quality and Ground Quality 1.09.2016. Dziennik Ustaw, No 165, 1359. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20021651359 (accessed on 15 July 2021). (In Polish)
- Radziemska, M.; Gusiatin, Z.M.; Cydzik-Kwiatkowska, A.; Cerdà, A.; Pecina, V.; Bęś, A.; Datta, R.; Majewski, G.; Mazur, Z.; Dzięcioł, J.; et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere 2021, 272, 129576. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, Y.; Shu, J.; Wu, Z. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. Environ. Pollut. 2019, 253, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, H.; Zhang, S.; Yi, Q.; Zhou, J.; Fang, G.; Zhou, J. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere 2020, 242, 125252. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z.; Fronczyk, J.; Jeznach, J. Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea Mays, L.) in nickel contaminated soil. Fresenius Environ. Bull. 2014, 23, 3140–3146. [Google Scholar]
- Manchisi, J.; Matinde, E.; Rowson, N.A.; Simmons, M.J.H.; Simate, G.S.; Ndlovu, S.; Mwewa, B. Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities. Sustainability 2020, 12, 2118. [Google Scholar] [CrossRef] [Green Version]
- Hassan, O.A.B. Remediation of chromium-contaminated soil using blast furnace slag. Int. J. Sustain. Dev. Plan. 2011, 6, 81–90. [Google Scholar] [CrossRef]
- Zhan, J.; Huang, H.; Yu, H.; Zhang, X.; Zheng, Z.; Wang, Y.; Liu, T.; Li, T. The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.). Environ. Pollut. 2020, 258, 113663. [Google Scholar] [CrossRef]
- Ke, T.; Guo, G.; Liu, J.; Zhang, C.; Tao, Y.; Wang, P.; Xu, Y.; Chen, L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 2021, 271, 116314. [Google Scholar] [CrossRef]
- Trippe, K.M.; Manning, V.A.; Reardon, C.L.; Klein, A.M.; Weidman, C.; Ducey, T.F.; Novak, J.M.; Watts, D.W.; Rushmiller, H.; Spokas, K.A.; et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Appl. Soil Ecol. 2021, 165, 103962. [Google Scholar] [CrossRef]
- Negim, O.; Eloifi, B.; Mench, M.; Bes, C.; Gaste, H.; Motelica-Heino, M. Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Soil Sediment Contam. 2010, 19, 174–187. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, Q.S. Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere 2006, 16, 519–524. [Google Scholar] [CrossRef]
- Gao, D.; Wang, F.P.; Wang, Y.T.; Zeng, Y.N. Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis. Sustainability 2020, 12, 9295. [Google Scholar] [CrossRef]
- Virkar, A.N.; Misra, S.N.; Sharma, N.; Ray, H.S.; Paul, A. Thermal analysis and X-ray diffraction studies on controlled release fertilizers prepared by incorporating nutrients into blast furnace slag. Thermochim. Acta 1987, 111, 135–142. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Chowdhury, N.; Wong, J.T.F. Effects of Ground Granulated Blast Furnace Slag (GGBS) on hydrological responses of Cd contaminated soil planted with a herbal medicinal plant (Pinellia ternata). Can. Geotech. J. 2019, 57, 673–682. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Q.; Huang, R.; Wu, K.; Li, Z. Contrasting impacts of mobilisation and immobilisation amendments on soil health and heavy metal transfer to food chain. Ecotoxicol. Environ. Saf. 2021, 209, 111836. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z.; Jeznach, J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem. Eng. Trans. 2013, 32, 301–306. [Google Scholar]
- Yuan, L.; Guo, P.; Guo, S.; Wang, J.; Huang, Y. Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environ. Res. 2021, 198, 111290. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.W.; Wang, L.Z.; Yang, J.G.; Zhao, P.P.; Zhu, Y.M.; Li, Y.P.; Yu, Y.S.; Liu, H.; Rensing, C.; Wu, Z.Y.; et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J. Hazard. Mat. 2021, 402, 123570. [Google Scholar] [CrossRef]
- Fry, K.L.; Wheeler, C.A.; Gillings, M.M.; Flegal, A.R.; Taylor, M.P. Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health. Environ. Pollut. 2020, 262, 114235. [Google Scholar] [CrossRef]
- Rasool, B.; Ur-Rahman, M.; Ramzani, P.M.A.; Zubair, M.; Khan, M.A.; Lewińska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Farhad, M.; et al. Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant. Environ. Pollut. 2021, 280, 116903. [Google Scholar] [CrossRef] [PubMed]
- Bali, S.; Jamwal, V.L.; Kaur, P.; Kohli, S.K.; Ohri, P.; Gandhi, S.G.; Bhardwaj, R.; Al-Huqail, A.A.; Siddiqui, M.H.; Ahmad, P. Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicol. Environ. Saf. 2019, 174, 283–294. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Jiang, J.J.; Li, J.; Tyagi, R.D.; Surampalli, R.Y. The potential utilization of slag generated from iron-and steelmaking industries: A review. Environ. Geochem. Health 2020, 42, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, M. Influence of heavy metals on plants. Kosmos 1995, 44, 639–651. (In Polish) [Google Scholar]
- Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Willscher, S.; Schaum, M.; Goldammer, J.; Franke, M.; Kuehn, D.; Ihling, H.; Schaarschmidt, T. Environmental biogeochemical characterization of a lignite coal spoil and overburden site in Central Germany. Hydromet 2017, 173, 170–177. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol. Ind. 2020, 117, 106626. [Google Scholar] [CrossRef]
- Liang, S.X.; Xi, X.C.; Li, Y.R. Study of the remediation effects of passivation materials on Pb-contaminated soil. Open. Chem. 2020, 18, 911–917. [Google Scholar] [CrossRef]
- Blake, L.; Goulding, K.W.T. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 2002, 240, 235–251. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Yan, X.; Tu, C.; Yu, Z. Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 2021, 31, 28–42. [Google Scholar]
Parameter | Unit | BFS | CS |
---|---|---|---|
Surface Area | m2/kg | 315 | 450 |
pH | - | 9.20 | 8.74 |
Cu | mg/kg | 0.48 | 0.29 |
Cd | mg/kg | 0.007 | 0.012 |
Pb | mg/kg | 0.21 | 0.09 |
Zn | mg/kg | 1.33 | 0.07 |
C | % | 0.66 | 29.56 |
O | % | 35.66 | 60.63 |
Na | % | 4.78 | 0.59 |
Mg | % | 2.65 | 0.73 |
Al | % | 18.26 | 2.68 |
Si | % | 23.52 | 2.55 |
S | % | - | 0.49 |
Cl | % | - | 0.26 |
K | % | 1.50 | 0.29 |
Ca | % | 8.45 | 0.97 |
Ti | % | 1.53 | 0.20 |
Fe | % | 2.74 | 1.05 |
P | % | 0.25 | - |
Parameter | Unit | Value | National Limit [24] |
---|---|---|---|
pH | - | 8.34 | - |
Cu | mg/kg | 761.18 | 600 |
Cd | mg/kg | 23.90 | 15 |
Pb | mg/kg | 13,539 | 600 |
Zn | mg/kg | 8683 | 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziemska, M.; Dzięcioł, J.; Gusiatin, Z.M.; Bęś, A.; Sas, W.; Głuchowski, A.; Gawryszewska, B.; Mazur, Z.; Brtnicky, M. Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals. Energies 2021, 14, 4300. https://doi.org/10.3390/en14144300
Radziemska M, Dzięcioł J, Gusiatin ZM, Bęś A, Sas W, Głuchowski A, Gawryszewska B, Mazur Z, Brtnicky M. Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals. Energies. 2021; 14(14):4300. https://doi.org/10.3390/en14144300
Chicago/Turabian StyleRadziemska, Maja, Justyna Dzięcioł, Zygmunt M. Gusiatin, Agnieszka Bęś, Wojciech Sas, Andrzej Głuchowski, Beata Gawryszewska, Zbigniew Mazur, and Martin Brtnicky. 2021. "Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals" Energies 14, no. 14: 4300. https://doi.org/10.3390/en14144300
APA StyleRadziemska, M., Dzięcioł, J., Gusiatin, Z. M., Bęś, A., Sas, W., Głuchowski, A., Gawryszewska, B., Mazur, Z., & Brtnicky, M. (2021). Recycling of Blast Furnace and Coal Slags in Aided Phytostabilisation of Soils Highly Polluted with Heavy Metals. Energies, 14(14), 4300. https://doi.org/10.3390/en14144300