Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Methods of Desulphurisation Used in the Polish Power Plants and Central Heating Plants and the Main Sorbents Applied
3.2. Sources and Production of Limestone Sorbents in Poland
3.3. Use of Limestone Sorbents in the Polish Power Industry with Obtaining FGD Gypsum and Other Desulphurisation Products
- PGE Górnictwo i Energetyka Konwencjonalna S.A.—Bełchatów, Opole, Turów and Dolna Odra PPs;
- Tauron Wytwarzanie S.A.—Jaworzno III and Łaziska PPs;
- ZE Pątnów-Adamów-Konin S.A.—Konin and Pątnów I-II PPs;
- ENEA S.A.—Kozienice and Połaniec PPs;
- ENERGA S.A.—Ostrołęka PP;
- PGE Energia Ciepła S.A.—Rybnik PP, Gdańsk, Gdynia, Wrocław, and Kraków CHPs;
- PGNiG Termika S.A.—Warszawa Siekierki CHP.
- Jaworzno III PP—since 1996, sorbent consumption 70,000–75,000 tpy;
- Opole PP—since 1997 with extension in 2019, sorbent consumption 60,000–90,000 tpy, with an expected increase even to 200,000–250,000 tpy;
- Konin PP—since 1997, sorbent consumption below 10,000 tpy;
- Połaniec PP—since 1999 with extension in 2008, sorbent consumption ca. 130,000 tpy, with own limestone milling plant of production capacity 200,000 tpy;
- Łaziska PP—since 2000, sorbent consumption 40,000 tpy;
- Dolna Odra PP—since 2000 with extension in 2003, sorbent consumption ca. 35,000 tpy;
- Kozienice PP—since 2001 with extension in 2007, 2010, 2015 and 2017, current sorbent consumption ca. 200,000 tpy and target consumption ca. 400,000 tpy;
- Ostrołęka PP—since 2008, sorbent consumption ca. 30,000 tpy;
- Rybnik PP—since 2008 (in 4 power units), consumption of limestone sorbent 70,000–75,000 tpy, additionally in the next 4 power units semi-dry or dry FGD with quicklime as sorbent;
- Pątnów I–II PP—since 2008, sorbent consumption up to 125,000 tpy;
- Siekierki CHP—since 2010, sorbent consumption up to 30,000 tpy;
- PGE Energia Ciepła S.A. CHPs in Kraków, Wrocław, Gdańsk and Gdynia—since 2015, total sorbent consumption ca. 50,000 tpy;
- Turów PP—since 2021, sorbent consumption 100,000–110,000 tpy, with own limestone milling plant producing limestone flour for wet limestone FGD and limestone sand for fluidised bed boilers.
- PGE Górnictwo i Energetyka Konwencjonalna S.A.—Turów PP;
- Tauron Wytwarzanie S.A.—Łagisza, Siersza and Jaworzno II PP;
- Tauron Ciepło Sp. z o.o.—Bielsko-Biała and Katowice CHPs;
- CEZ Chorzów S.A.—Chorzów CHP;
- PGNiG Termika S.A.—Warszawa Żerań CHP.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagayev, I.; Lochard, J. EU air pollution regulation: A breath of fresh air for Eastern European polluting industries? J. Environ. Econ. Manag. 2017, 83, 145–163. [Google Scholar] [CrossRef]
- Cristobal, J.; Guillen-Gosalbez, G.; Jimenez, L.; Irabien, A. Optimization of global and local pollution control in electricity production from coal burning. Appl. Energy 2012, 92, 369–378. [Google Scholar] [CrossRef]
- Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C. Forty years of improvements in European air quality: Regional policy-industry interactions. Atmos. Chem. Phys. 2016, 16, 3825–3841. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 96/62/EC of 27 September 1996 on Ambient Air Quality Assessment and Management. 1996. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31996L0062 (accessed on 29 January 2021).
- Council Directive 1999/30/EC of 22 April 1999 Relating to Limit Values for Sulphur Dioxide, Nitrogen Dioxide and Oxides of Nitrogen, Particulate Matter and Lead in Ambient Air. 1999. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31999L0030 (accessed on 29 January 2021).
- Communication from the Commission to the Council and the European Parliament. In Proceedings of the Thematic Strategy on Air Pollution, COM(2005) 0446 Final, Brussels, Belgium, 21 September 2005; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2005:0446:FIN:EN:PDF (accessed on 29 January 2021).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. 2008. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 29 January 2021).
- Directive 2001/80/EC of the European Parliament and of the Council of 23 October 2001 on the Limitation of Emissions of Certain Pollutants into the Air from Large Combustion Plants. 2001. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32001L0080 (accessed on 29 January 2021).
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075 (accessed on 29 January 2021).
- Lecomte, T.; de la Fuente, J.F.F.; Neuwahl, F.; Canova, M.; Pinasseau, A.; Jankov, I.; Brinkmann, T.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for Large Combustion Plants; EC JRC Institute for Prospective Technological Studies: Seville, Spain, 2017. [Google Scholar]
- Pouklikas, A. Review of design, operating, and financial considerations in flue gas desulfurizations systems. Energy Technol. Policy 2015, 2, 92–103. [Google Scholar] [CrossRef]
- Kilic, O.; Acarkan, B.; Ay, S. FGD investments as part of energy policy: A case study for Turkey. Energy Policy 2013, 62, 1461–1469. [Google Scholar] [CrossRef]
- Graus, W.; Worrel, E. Effects of SO2 and NOx control on energy-efficiency power generation. Energy Policy 2007, 35, 3898–3908. [Google Scholar] [CrossRef]
- Fernandez Gonzalez, P.; Landajo, M.; Presno, M.J. The driving forces behind changes in GHG emission levels in EU-27. Differences between member states. Environ. Sci. Policy 2014, 38, 11–16. [Google Scholar] [CrossRef]
- Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC (Text with EEA Relevance). 2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32003L0087 (accessed on 29 January 2021).
- Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 Amending Directive 2003/87/EC so as to Improve and Extend the Greenhouse Gas Emission Allowance Trading Scheme of the Community. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009L0029 (accessed on 29 January 2021).
- Liobikiene, G.; Butkus, M. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Ren. Energy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- EC 2011—COM. A Resource-Efficient Europe—Flagship Initiative under the Europe 2020 Strategy. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0021:FIN:EN:PDF (accessed on 29 January 2021).
- Carlini, E.; Schroeder, R.; Birkebek, J.; Massaro, F. EU transition in power sector. How RES affects the design and operations of transmission power systems. Electr. Power Syst. Res. 2019, 169, 74–91. [Google Scholar] [CrossRef]
- Tagliapietra, S.; Zachmann, G.; Edenhofer, O.; Glachant, J.M.; Linares, P.; Loeschel, A. The European union energy transition: Key priorities for the next five years. Energy Policy 2019, 132, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Heidrich, O.; Reckien, D.; Olazabal, M.; Foley, A.; Salvia, M.; de Gregorio Hurtado, S.; Orru, H.; Flacke, J.; Geneletti, D.; Pietrapertosa, F.; et al. National climate policies across Europe and their impacts on cities strategies. J. Environ. Manag. 2016, 168, 36–45. [Google Scholar] [CrossRef] [Green Version]
- National Air Protection Program until 2020 (with a Perspective until 2030); Ministry of Environment: Warsaw, Poland, 2015; Available online: File:///C:/Users/73RY74J/AppData/Local/Temp/Krajowy%20Program%20Ochrony%20Powietrza%20do%202020%20z%20perspektyw%C4%85%20do%202030.pdf (accessed on 29 January 2021). (In Polish)
- Poland’s Energy Policy until 2040—Announcement of the Minister of Climate and Environment of 2 March 2021 on the State’s Energy Policy until 2040. Polish Monitor. 10 March 2021, p. 264. Available online: https://www.dziennikustaw.gov.pl/MP/2021/264 (accessed on 10 March 2021). (In Polish).
- National Energy and Climate Plan for the Years 2021–2030; Ministry of State Assets: Warsaw, Poland. Available online: https://www.gov.pl/web/aktywa-panstwowe/krajowy-plan-na-rzecz-energii-i-klimatu-na-lata-2021-2030-przekazany-do-ke (accessed on 30 April 2021). (In Polish)
- Gawlik, L. The Polish power industry in energy transformation process. Miner. Econ. 2018, 31, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Kaszyński, P.; Kamiński, J. Coal Demand and Environmental Regulations: A Case study of the Polish Power Sector. Energies 2020, 13, 1521. [Google Scholar] [CrossRef] [Green Version]
- Antosiewicz, M.; Nikas, A.; Szpor, A.; Witajewski-Baltvilks, J.; Doukas, H. Pathways for the transition of the Polish power sector and associated risks. Environ. Innov. Soc. Transit. 2020, 35, 271–291. [Google Scholar] [CrossRef]
- The Statistics Poland (GUS). Environment 2020; GUS: Warszawa, Poland, 2020; ISSN 0867–3217. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 29 January 2021). (In Polish)
- Galos, K.; Smakowski, T.; Szlugaj, J. Flue-gas desulphurisation products from Polish coal-fired power plants. Appl. Energy 2003, 75, 257–265. [Google Scholar] [CrossRef]
- Galos, K.; Szlugaj, J.; Burkowicz, A. Sources of limestone sorbents for flue gas desulphurization in Poland in the context of the needs of domestic power industry. Polityka Energetyczna Energy Policy J. 2016, 19, 149–170. [Google Scholar]
- Gawlicki, M.; Galos, K.; Szlugaj, J. Waste mineral raw materials from power plants, combined heat and power plants and heating plants. In Mineral Raw Materials of Poland. Waste Mineral Raw Materials; Galos, K., Ed.; IGSMiE PAN: Kraków, Poland, 2009; pp. 139–211. (In Polish) [Google Scholar]
- Hlincik, T.; Buryan, P. Evaluation of limestones for the purposes of desulphurization during the fluid combustion of brown coal. Fuel 2013, 104, 208–215. [Google Scholar] [CrossRef]
- Burkowicz, A.; Galos, K. Limestone and lime. In Minerals Yearbook of Poland 2013; Smakowski, T., Galos, K., Lewicka, E., Eds.; PIG-PIB: Warszawa, Poland, 2014; pp. 313–323. (In Polish) [Google Scholar]
- Szuflicki, M.; Malon, A.; Tymiński, M. (Eds.) The Balance of Mineral Resources Deposits in Poland as of 31 XII 2015–2019; PIG-PIB: Warszawa, Poland, 2019. (In Polish)
- Brzeziński, D. Limestone and marl for the cement and limestone industries. In The Balance of Mineral Resources Deposits in Poland as of 31 XII 2019; Szuflicki, M., Malon, A., Tymiński, M., Eds.; PIG-PIB: Warszawa, Poland, 2020; pp. 468–476. (In Polish) [Google Scholar]
- Brzeziński, D.; Miśkiewicz, W. Crushed and dimension stone. In The Balance of Mineral Resources Deposits in Poland as of 31 XII 2019; Szuflicki, M., Malon, A., Tymiński, M., Eds.; PIG-PIB: Warszawa, Poland, 2020; pp. 105–127. (In Polish) [Google Scholar]
- Wyszomirski, P.; Galos, K. Mineral and Chemical Raw Materials of the Ceramics Industry; UWND AGH: Kraków, Poland, 2007; pp. 133–140. (In Polish)
- Nieć, M.; Tchórzewska, D. Limestone and other calcium minerals deposits. In Minerals of Poland. Rock Minerals: Carbonate Minerals; Ney, R., Ed.; IGSMiE PAN: Kraków, Poland, 2000; pp. 122–125. (In Polish) [Google Scholar]
- Burkowicz, A.; Galos, K. Limestone, lime. In The Balance of Mineral Raw Materials Management in Poland and in the World 2013; Smakowski, T., Galos, K., Lewicka, E., Eds.; PIG-PIB: Warszawa, Poland, 2015; pp. 1013–1034. (In Polish) [Google Scholar]
- The Statistics Poland (GUS). Production of Industrial Products in 2019 (and Unpublished Data); GUS: Warszawa, Poland, 2019. Available online: https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/przemysl/produkcja-wyrobow-przemyslowych-w-2019-roku (accessed on 29 January 2021).
- Emitor 2014. Emission of Environment Pollutants from Power Plants and Central Heating Plants—Report of the Agency of Energy Market; Agencja Rynku Energii: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- PSE—Polish Power Grids—Information on the PPS Generation Resources (as of 29 November 2019). Available online: https://www.pse.pl/documents/20182/f6bcb852-387b-4158-be1c-8ef58d25adb0?safeargs=646f776e6c6f61643d74727565 (accessed on 29 January 2021). (In Polish).
- Córdoba, P. Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 2015, 144, 274–286. [Google Scholar] [CrossRef]
- Hycnar, E.; Ratajczak, T.; Sęk, M. Dolomites as SO2 Sorbents in Fluid Combustion Technology. Resources 2020, 9, 121. [Google Scholar] [CrossRef]
- Zheng, Y.; Kill, S.; Johnsson, J.E.; Zhong, Q. Use of spray dry absorption product in wet flue gas desulphurization plants: Pilot-scale experiments. Fuel 2002, 81, 1899–1905. [Google Scholar] [CrossRef]
- Roszczynialski, W.; Gawlicki, M. Management directions for flue gas desulphurisation products. In Proceedings of the 7th Conference on “Current Issues and Prospects of Mineral Resources Management”, Polanica Zdrój, Poland, 19–21 November 1997. (In Polish). [Google Scholar]
- Bis, Z. Lime sorbents in power industry. In Processing and Use of Rock Raw Materials; Galos, K., Ed.; IGSMiE PAN: Kraków, Poland, 2002. (In Polish) [Google Scholar]
- Knura, P. Semi-dry flue gas desulphurization method using a pneumatic reactor integrated with a fabric filter (PR + FF method)—Directions of technology development, potential and possibilities. In Proceedings of the 2nd Conference of Electricity Generators, Skawina, Poland, 28–30 September 2011. (In Polish). [Google Scholar]
- Szmigielska, E.; Głomba, M. Physico-chemical analysis of limestone utilized in desulfurization methods of flue gas from the power energy. In Proceedings of the Conference POL-EMIS: Atmospheric Air Protection, Sienna-Czarna Góra, Poland, 13–16 June 2012. (In Polish). [Google Scholar]
- Gutierrez Ortiz, F.J. A simple realistic modeling of full-scale wet limestone FGD units. Chem. Eng. J. 2010, 165, 426–439. [Google Scholar] [CrossRef]
- Tegethoff, F.W. (Ed.) Calcium Carbonate. From the Cretaceous Period into the 21st Century; Birkhäuser Verlag: Basel, Switzerland, 2001. [Google Scholar]
- Lewicka, E.; Szlugaj, J.; Burkowicz, A.; Galos, K. Sources and markets of limestone flour in Poland. Resources 2020, 9, 118. [Google Scholar] [CrossRef]
- Niesler, J. Development of fluidised bed furnaces in the power industry. Piece Przemysłowe Kotły 2011, 4, 33–36. (In Polish) [Google Scholar]
- Hycnar, J. Fluidized beds—An example of rational solution of wastes problems. Polityka Energetyczna Energy Policy J. 2006, 9, 365–376. (In Polish) [Google Scholar]
- Trybuś, T. Fluidized-Bed Combustion (FBC) as a method of abating sulphur dioxide and nitrogen oxides emission. Environ. Pollut. Control. J. Pol. Sanit. Eng. Assoc. 1995, 2, 15–18. (In Polish) [Google Scholar]
- European Parliament Legislative Resolution on the Application by the Republic of Poland to Become a Member of the European Union (AA-AFNS 1-6—C5-0122/2003—2003/0901G(AVC)). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52003AP0176&from=ES (accessed on 29 January 2021).
- Szlugaj, J.; Naworyta, W. Analysis of the changes in the Polish gypsum resources in the context of flue gas desulfurization in conventional power plants. Gospod. Surowcami Miner. Miner. Resour. Manag. 2015, 31, 93–108. (In Polish) [Google Scholar]
- Gawlik, L.; Grudziński, Z.; Kamiński, J.; Kaszyński, P.; Kryzia, D.; Lorenz, U.; Mirowski, T.; Mokrzycki, E.; Olkuski, T.; Ozga-Blaschke, U. Węgiel dla Polskiej Energetyki w Perspektywie 2050 Roku—Analizy Scenariuszowe; Górnicza Izba Przemysłowo-Handlowa: Katowice, Poland, 2013. (In Polish) [Google Scholar]
Mine (Deposit) | Province | Applications | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|
Barcin-Piechcin-Pakość | Kujawsko-Pomorskie | c,l,a,f,p | 6252 | 6485 | 6606 | 7855 | 7423 |
Ostrówka | Świętokrzyskie | a,s,p | 6417 | 5825 | 5817 | 5878 | 5980 |
Trzuskawica | Świętokrzyskie | l,p,a,s,f | 3775 | 3401 | 3777 | 4002 | 4519 |
Górażdże | Opolskie | c,l,s,f | 3508 | 3486 | 3761 | 4535 | 4239 |
Morawica III-1 | Świętokrzyskie | a,s,f,d | 2762 | 2248 | 2809 | 3237 | 3124 |
Jaźwica | Świętokrzyskie | a,s,f | 1000 | 986 | 1678 | 2081 | 2425 |
Bukowa | Świętokrzyskie | l,s,p,f | 2184 | 2430 | 2468 | 2585 | 2350 |
Czatkowice | Małopolskie | s,p,a | 1892 | 1759 | 1487 | 1673 | 1752 |
Celiny I | Świętokrzyskie | a,s | 936 | 1273 | 1175 | 1308 | 1481 |
Szymiszów | Opolskie | a,s,f | – | – | 402 | 1018 | 1375 |
Tarnów Opolski | Opolskie | s,l,p,f | 640 | 598 | 573 | 645 | 1089 |
Wierzbica | Świętokrzyskie | p,a,s | 614 | 807 | 617 | 738 | 634 |
Połom | Dolnośląskie | a,s,p,f,l | 462 | 531 | 540 | 703 | 578 |
Raciszyn | Łódzkie | p,f,d,s | 100 | 2 | 281 | 324 | 484 |
Raciszyn II | Łódzkie | p,f,s | 549 | 521 | 529 | 578 | 427 |
Sławno | Łódzkie | p,f | 274 | 291 | 320 | 291 | 301 |
Chęciny-Wolica | Świętokrzyskie | p | – | 38 | 107 | 256 | 260 |
Płaza | Małopolskie | f,a,p | 231 | 33 | 123 | 26 | 34 |
Izbicko II | Opolskie | s,f,l | 966 | 726 | 764 | 843 | – |
Producer/Sorbent. | Sorbent Source | Chemical Composition | Grain Size Characteristics | ||||
---|---|---|---|---|---|---|---|
CaCO3 | SiO2 + Insolubles | MgCO3 | Fe2O3 | Al2O3 | |||
ZPW Trzuskawica S.A., Trzuskawica plant/Limestone sorbent for FGD | Trzuskawica Devonian limestone | >98.0% | <1.0% | <2.0% | <0.06% | <0.25% | 85–95% < 0.063 mm |
ZPW Trzuskawica S.A., Bielawa plant/ Limestone flour | Barcin-Piechcin-Pakość Jurassic limestone | >93.0% | <3.0% | <1.5% | <0.4% | NA | min. 80% < 0.075 mm |
KW Czatkowice Sp. z o.o./Limestone flour | Czatkowice Carboniferous limestone | 96.0% | 1.5% | 1.5% | 0.15% | 0.09% | 98.7% < 0.2 mm 89.4% < 0.09 mm |
ZW Lhoist S.A./ Limestone sorbent for FGD | Tarnów Opolski Triassic limestone | 97.5% | 1.1% | 0.9% | 0.3% | 0.1% | min. 90% < 0.09 mm |
Labtar Sp. z o.o./ Fine-grained sorbent | Tarnów Opolski Triassic limestone | >94.0% | <2.5% | <2.0% | <0.7% | <0.7% | 92.3% < 0063 mm 98.9% < 0.09 mm |
Nordkalk Sp. z o.o./ Electra 90 (WO) sorbent | Wolica Jurassic limestone | 97.0% | 1.25% | 0.70% | 0.12% | 0.12% | Various sizes: from 0–0.09 mm to 0.8–1.4 mm |
EGM Sp. z o.o./ Limestone flour | Wierzbica Jurassic limestone | >97.3% | <0.5% | <1.2% | <0.15% | <0.4% | <0.1 mm |
WKG Sp. z o.o./ Limestone flour | Raciszyn Jurassic limestone | >96.0% | <1.5% | <0.8% | <0.5% | <0.5% | <0.1 mm |
Power Plant (PP)/Central Heating Plant (CHP) | Achievable Power (MW) | Applied Flue Gas Desulphurisation Method | Type of Sorbent |
---|---|---|---|
Bełchatów PP | 5102 | Wet limestone | Limestone flour < 0.1 mm |
Opole PP | 3342 | Wet limestone | Limestone flour < 0.1 mm |
Kozienice PP | 4016 | Wet limestone | Limestone flour < 0.1 mm |
Rybnik PP | 1800 | Wet limestone, semi-dry and dry | Limestone flour < 0.1 mm, Lime or hydrated lime |
Połaniec PP | 1657 | Wet limestone | Limestone flour < 0.1 mm |
Jaworzno III PP | 1345 | Wet limestone | Limestone flour < 0.1 mm |
Łaziska PP | 1155 | Wet limestone, semi-dry | Limestone flour < 0.1 mm, Lime or hydrated lime |
Pątnów I-II PP | 1120 | Wet limestone | Limestone flour < 0.1 mm |
Dolna Odra PP | 1350 | Wet limestone | Limestone flour < 0.1 mm |
CHPs: Kraków, Wrocław, Gdańsk, Gdynia | 902 (in total) | Wet limestone | Limestone flour < 0.1 mm |
Ostrołęka PP | 690 | Wet limestone | Limestone flour < 0.1 mm |
Warsaw Siekierki CHP | 523 | Wet limestone, semi-dry | Limestone flour < 0.1 mm, Lime or hydrated lime |
Konin PP | 171 | Wet limestone | Limestone flour < 0.1 mm |
Skawina PP | 389 | Semi-dry | Lime or hydrated lime |
Łódź 4, Poznań Karolin, Zabrze, Głogów, and Lublin-Megatem CHPs | 838 (in total) | Semi-dry | Lime or hydrated lime |
Miechowice, Lublin Wrotków, and Zgierz CHPs | 303 (in total) | Dry | Lime or hydrated lime |
Turów PP | 1488 | Fluidised bed boilers, Wet limestone | Limestone flour 0.1–1.2 mm, Limestone flour < 0.1 mm |
Łagisza PP | 700 | Fluidised bed boilers, semi-dry | Limestone flour 0.1–1.2 mm, Lime or hydrated lime |
Siersza PP | 557 | Fluidised bed boilers, semi-dry | Limestone flour 0.1–1.2 mm, Lime or hydrated lime |
Warszawa Żerań CHP | 375 | Fluidised bed boilers | Limestone flour 0.1–1.2 mm |
Chorzów CHP | 156 | Fluidised bed boilers, dry | Limestone flour 0.1–1.2 mm, Lime or hydrated lime |
Jaworzno II PP | 149 | Fluidised bed boilers | Limestone flour 0.1–1.2 mm |
Katowice CHP | 125 | Fluidised bed boilers | Limestone flour 0.1–1.2 mm |
Bielsko-Biała CHP | 103 | Fluidised bed boilers, dry | Limestone flour 0.1–1.2 mm, Lime or hydrated lime |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlugaj, J.; Galos, K. Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland. Energies 2021, 14, 4275. https://doi.org/10.3390/en14144275
Szlugaj J, Galos K. Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland. Energies. 2021; 14(14):4275. https://doi.org/10.3390/en14144275
Chicago/Turabian StyleSzlugaj, Jarosław, and Krzysztof Galos. 2021. "Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland" Energies 14, no. 14: 4275. https://doi.org/10.3390/en14144275
APA StyleSzlugaj, J., & Galos, K. (2021). Limestone Sorbents Market for Flue Gas Desulphurisation in Coal-Fired Power Plants in the Context of the Transformation of the Power Industry—A Case of Poland. Energies, 14(14), 4275. https://doi.org/10.3390/en14144275