Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study
Abstract
:1. Introduction
2. Literature Review and Hypothesis Formulation
2.1. Climate Risk and Energy Consumption Transition
2.2. The Moderating Role of Governance Quality
3. Methodology and Data
3.1. Model Specification
3.2. Data Sources
3.3. Variable Description
4. Empirical Results
4.1. Main Results
4.1.1. The Effect of Climate Risk on the Transition of Energy Consumption Structure
4.1.2. Moderating Effect of Governance Quality
4.2. Additional Analysis
4.2.1. Dealing with Endogeneity
4.2.2. Tests of Heterogeneous Effects
4.2.3. Tests of External Shocks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arent, D.; Pless, J.; Mai, T.; Wiser, R.; Hand, M.; Baldwin, S.; Denholm, P. Implications of high renewable electricity penetration in the US for water use, greenhouse gas emissions, land-use, and materials supply. Appl. Energy 2014, 123, 368–377. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Shumway, T. Good day sunshine: Stock returns and the weather. J. Financ. 2003, 58, 1009–1032. [Google Scholar] [CrossRef]
- Novy-Marx, R. Predicting anomaly performance with politics, the weather, global warming, sunspots, and the stars. J. Financ. Econ. 2014, 112, 137–146. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sust. Energ. Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Cian, E.; Wing, I.S. Global energy consumption in a warming climate. Environ. Resour. Econ. 2019, 72, 365–410. [Google Scholar] [CrossRef]
- Salim, R.A.; Hassan, K.; Shafiei, S. Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries. Energy Econ. 2014, 44, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manage. 2021, 284, 111999. [Google Scholar] [CrossRef] [PubMed]
- Liddle, B. Urban density and climate change: A STIRPAT analysis using city-level data. J. Transp. Geogr. 2013, 28, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Kong, H.; Zhang, S. Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia? Renew. Energ. 2021, 169, 23–33. [Google Scholar] [CrossRef]
- Sadorsky, P. The effect of urbanization and industrialization on energy use in emerging economies: Implications for sustainable development. Am. J. Econ. Sociol. 2014, 73, 392–409. [Google Scholar] [CrossRef]
- Mi, Z.F.; Pan, S.Y.; Yu, H.; Wei, Y.M. Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. J. Clean. Prod. 2015, 103, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Seck, G.S.; Hache, E.; Bonnet, C.; Simoën, M.; Carcanague, S. Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations. Resour. Conserv. Recycl. 2020, 163, 105072. [Google Scholar] [CrossRef] [PubMed]
- Topcu, M.; Payne, J.E. Further evidence on the trade-energy consumption nexus in OECD countries. Energy Policy 2018, 117, 160–165. [Google Scholar] [CrossRef]
- Yao, X.; Shah, W.U.H.; Yasmeen, R.; Zhang, Y.; Kamal, M.A.; Khan, A. The impact of trade on energy efficiency in the global value chain: A simultaneous equation approach. Sci. Total Environ. 2021, 765, 142759. [Google Scholar] [CrossRef]
- Diaz, D.; Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Chang. 2017, 7, 774–782. [Google Scholar] [CrossRef]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Houser, T. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tol, R.S. The economic impacts of climate change. Rev. Environ. Econ. Policy 2018, 12, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Morgan, J.; Baccianti, C. Climate Change and the Macro Economy. Occasional Paper Series, European Central Bank. 2020. Available online: https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op243~2ce3c7c4e1.en.pdf? (accessed on 25 June 2021).
- Huang, H.H.; Kerstein, J.; Wang, C. The impact of climate risk on firm performance and financing choices: An international comparison. J. Int. Bus. Stud. 2018, 49, 633–656. [Google Scholar] [CrossRef]
- Ding, R.; Liu, M.; Wang, T.; Wu, Z. The impact of climate risk on earnings management: International evidence. J. Account. Public. Pol. 2021, 40, 106818. [Google Scholar] [CrossRef]
- Kim, Y.; Park, M.S. Pricing of seasoned equity offers and earnings management. J. Financ. Quant. Anal. 2005, 40, 435–463. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.; Solak, S. Climate change and optimal energy technology R&D policy. Eur. J. Oper. Res. 2011, 213, 442–454. [Google Scholar]
- Chung, J.B.; Kim, E.S. Public perception of energy transition in Korea: Nuclear power, climate change, and party preference. Energy Policy 2018, 116, 137–144. [Google Scholar] [CrossRef]
- Price, J.; Keppo, I. Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models. Appl. Energy 2017, 195, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.; Li, Y.P.; Suo, C.; Ma, Y.; Lv, J. Analyzing the impact of climate change on energy-economy-carbon nexus system in China. Appl. Energy 2020, 262, 114568. [Google Scholar] [CrossRef]
- Pointner, W.; Ritzberger-Grünwald, D. Climate Change as a Risk to Financial Stability. Financial Stability Report, Oesterreichische Nationalbank. 2019. Available online: https://www.oenb.at/en/Publications/Financial-Market/Financial-Stability-Report/2019/financial-stability-report-38.html (accessed on 24 June 2021).
- Dafermos, Y.; Nikolaidi, M.; Galanis, G. Climate change, financial stability and monetary policy. Ecol. Econ. 2018, 152, 219–234. [Google Scholar] [CrossRef]
- Giuzio, M.; Krušec, D.; Levels, A.; Melo, A.S.; Mikkonen, K.; Radulova, P. Climate Change and Financial Stability. Financial Stability Review, European Central Bank. 2019. Available online: https://www.ecb.europa.eu//pub/financial-stability/fsr/special/html/ecb.fsrart201905_1~47cf778cc1.en.html (accessed on 25 June 2021).
- Monasterolo, I. Climate change and the financial system. Annu. Rev. Resour. Econ. 2020, 12, 299–320. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, S.; Wang, N. Does financial agglomeration enhance regional green economy development? Evidence from China. Green Finance 2020, 2, 173–196. [Google Scholar] [CrossRef]
- Stern, P.; Sovacool, B.; Dietz, T. Towards a science of climate and energy choices. Nat. Clim. Chang. 2016, 6, 547–555. [Google Scholar] [CrossRef]
- Porfiriev, B.N. The low-carbon development paradigm and climate change risk reduction strategy for the economy. Stud. Russian Econ. Dev. 2019, 30, 111–118. [Google Scholar] [CrossRef]
- Mittenzwei, D.; Bruckermann, T.; Nordine, J.; Harms, U. The energy concept and its relation to climate literacy. Eurasia J. Math. Sci. Technol. Educ. 2019, 15, em1703. [Google Scholar] [CrossRef]
- Puttick, G.; Tucker-Raymond, E. Building systems from scratch: An exploratory study of students learning about climate change. J. Sci. Educ. Technol. 2018, 27, 306–321. [Google Scholar] [CrossRef]
- Fuss, S.; Szolgayová, J.; Khabarov, N.; Obersteiner, M. Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects. Energy Policy 2012, 40, 59–68. [Google Scholar] [CrossRef]
- Mccollum, D.; Krey, V.; Kolp, P.; Yu, N.; Riahi, K. Transport electrification: A key element for energy system transformation and climate stabilization. Clim. Chang. 2014, 123, 651–664. [Google Scholar] [CrossRef]
- Mikellidou, C.V.; Shakou, L.M.; Boustras, G.; Dimopoulos, C. Energy critical infrastructures at risk from climate change: A state of the art review. Safety Sci. 2018, 110, 110–120. [Google Scholar] [CrossRef]
- Canales, F.A.; Jadwiszczak, P.; Jurasz, J.; Wdowikowski, M.; Ciapała, B.; Kaźmierczak, B. The impact of long-term changes in air temperature on renewable energy in Poland. Sci. Total Environ. 2020, 729, 138965. [Google Scholar] [CrossRef]
- Chakravarty, S.; Tavoni, M. Energy poverty alleviation and climate change mitigation: Is there a trade off? Energy Econ. 2013, 40, S67–S73. [Google Scholar] [CrossRef] [Green Version]
- Kinley, R. Climate change after Paris: From turning point to transformation. Clim. Policy 2017, 17, 9–15. [Google Scholar] [CrossRef]
- Schaffrin, A.; Sewerin, S.; Seubert, S. The innovativeness of national policy portfolios–climate policy change in Austria, Germany, and the UK. Environ. Polit. 2014, 23, 860–883. [Google Scholar] [CrossRef]
- Andonova, L.B.; Hale, T.N.; Roger, C.B. National policy and transnational governance of climate change: Substitutes or complements? Int. Stud. Quart. 2017, 61, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Bang, G. Energy security and climate change concerns: Triggers for energy policy change in the United States? Energy Policy 2010, 38, 1645–1653. [Google Scholar] [CrossRef]
- Tjernström, E.; Tietenberg, T. Do differences in attitudes explain differences in national climate change policies? Ecol. Econ. 2008, 65, 315–324. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 2010, 38, 656–660. [Google Scholar] [CrossRef]
- Sadorsky, P. Do urbanization and industrialization affect energy intensity in developing countries? Energy Econ. 2013, 37, 52–59. [Google Scholar] [CrossRef]
- Tiba, S.; Frikha, M. Income, trade openness and energy interactions: Evidence from simultaneous equation modeling. Energy 2018, 147, 799–811. [Google Scholar] [CrossRef]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues1. Hague J. Rule Law 2011, 3, 220–246. [Google Scholar] [CrossRef]
- Harmeling, S. Global Climate Risk Index 2006: Weather-Related Loss Events and Their Impacts on Countries in 2004 and in a LongTerm Comparison. Germanwatch. 2006. Available online: https://germanwatch.org/sites/default/files/publication/2154.pdf (accessed on 24 June 2021).
- Kreft, S.; Eckstein, D. Global Climate Risk Index 2014: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2012 and 1993 to 2012. Germanwatch. 2014. Available online: https://germanwatch.org/sites/default/files/publication/8551.pdf (accessed on 24 June 2021).
- Xu, X.; Wei, Z.; Ji, Q.; Wang, C.; Gao, G. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resour. Policy 2019, 63, 101470. [Google Scholar] [CrossRef]
- Harjanne, A.; Korhonen, J.M. Abandoning the concept of renewable energy. Energy Policy 2019, 127, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Albouy, D.; Graf, W.; Kellogg, R.; Wolff, H. Climate amenities, climate change, and American quality of life. J. Assoc. Environ. Resour. Econ. 2016, 3, 205–246. [Google Scholar] [CrossRef] [Green Version]
- Lawless, A.S.; Seitz, R.D. Effects of shoreline stabilization and environmental variables on benthic infaunal communities in the Lynnhaven River System of Chesapeake Bay. J. Exp. Mar. Biol. Ecol. 2014, 457, 41–50. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, T.; Yu, M.; Pan, L. Regional Disparities and Transformation of Energy Consumption in China Based on a Hybrid Input-Output Analysis. Energies 2020, 13, 5287. [Google Scholar] [CrossRef]
- Yüksel, I. Energy production and sustainable energy policies in Turkey. Renew. Energ. 2010, 35, 1469–1476. [Google Scholar] [CrossRef]
- Alvarado, R.; Deng, Q.; Tillaguango, B.; Méndez, P.; Bravo, D.; Chamba, J.; Ahmad, M. Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries. Energy 2021, 215, 119147. [Google Scholar] [CrossRef]
- Narayan, P.K.; Narayan, S.; Smyth, R. Energy consumption at business cycle horizons: The case of the United States. Energy Econ. 2011, 33, 161–167. [Google Scholar] [CrossRef]
- Balcilar, M.; Ozdemir, Z.A.; Ozdemir, H.; Shahbaz, M. The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renew. Energ. 2018, 126, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Al-Maamary, H.M.; Kazem, H.A.; Chaichan, M.T. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sust. Energ. Rev. 2017, 75, 989–1007. [Google Scholar] [CrossRef]
- Haque, M.I. Oil price shocks and energy consumption in GCC countries: A system-GMM approach. Environ. Dev. Sustain. 2021, 23, 9336–9351. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Jaffe, A.M. Geopolitics and the Oil Price Cycle-An Introduction. Econ. Energy Environ. Pol. 2020, 9, 1–10. [Google Scholar]
Variables | Calculation | Meaning | Data Sources |
---|---|---|---|
ECT | the proportion of renewable energy consumption in the total initial energy consumption | reflects the level of energy consumption transition | BP Statistical Review of World Energy |
CRI | the current climate risk index score | reflects the short-term effects of climate risk | Germanwatch, the Global Climate Risk Index Report |
CRI_long | the cumulative climate risk index for the previous 20 years | reflects the long-term effects of climate risk | Germanwatch, the Global Climate Risk Index Report |
lnpgdp | the natural logarithm of the actual GDP per capita | reflects the level of economic development | World Bank WDI Database |
urbanr | the proportion of urban population in the total population | reflects the level of urbanization | World Bank WDI Database |
indusr | the proportion of industrial value-added in the GDP | reflects the level of industrialization | World Bank WDI Database |
trader | the proportion of trade scale in the GDP | reflects the degree of trade activity | World Bank WDI Database |
Variables | Obs | Mean | Std. Dev. | Min | Max | ADF-Fisher Test |
---|---|---|---|---|---|---|
ECT | 1018 | 0.026 | 0.03 | 0 | 0.125 | 3.486 *** |
CRI | 1313 | 69.216 | 31.585 | 1.83 | 126.17 | 14.126 *** |
CRI_long | 1371 | 86.829 | 41.119 | 7.33 | 179.17 | 12.583 *** |
lnpgdp | 1347 | 9.206 | 1.351 | 5.684 | 11.685 | 24.237 *** |
urbanr | 1361 | 0.663 | 0.203 | 0.13 | 1 | 10.439 *** |
indusr | 1321 | 0.313 | 0.134 | 0.01 | 0.878 | 8.777 *** |
trader | 1300 | 0.919 | 0.608 | 0.002 | 4.426 | 16.997 *** |
Variables | ECT | CRI | CRI_long | lnpgdp | Urbanr | Indusr | Trader |
---|---|---|---|---|---|---|---|
ECT | 1.000 | ||||||
CRI | −0.093 *** | 1.000 | |||||
CRI_long | −0.144 *** | 0.649 *** | 1.000 | ||||
lnpgdp | 0.348 *** | 0.229 *** | 0.266 *** | 1.000 | |||
urbanr | 0.145 *** | 0.256 *** | 0.338 *** | 0.780 *** | 1.000 | ||
indusr | −0.42 2 *** | 0.184 *** | 0.327 *** | −0.026 | 0.050 * | 1.000 | |
trader | −0.028 | 0.322 *** | 0.316 *** | 0.328 *** | 0.261 *** | −0.024 | 1.000 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | ECT | ECT | ECT | ECT | ECT | ECT |
CRI | 0.459 *** | 0.332 *** | - | - | - | - |
(0.099) | (0.094) | |||||
CRI(-1) | - | - | 0.275 *** | - | - | - |
(0.100) | ||||||
CRI_long | - | - | - | 0.578 *** | 0.359 *** | - |
(0.097) | (0.103) | |||||
CRI_long(-1) | - | - | - | - | - | 0.357 *** |
(0.109) | ||||||
lnpgdp | - | 1.217 *** | 1.308 *** | - | 1.235 *** | 1.325 *** |
(0.107) | (0.114) | (0.104) | (0.111) | |||
urbanr | - | −2.725 *** | −3.012 *** | - | −2.534 *** | −2.788 *** |
(0.678) | (0.721) | (0.679) | (0.715) | |||
indusr | - | −8.480 *** | −9.172 *** | - | −7.793 *** | −8.402 *** |
(0.730) | (0.775) | (0.731) | (0.771) | |||
trader | - | −0.676 *** | −0.743 *** | - | −0.712 *** | −0.750 *** |
(0.139) | (0.148) | (0.134) | (0.142) | |||
Constant | 2.594 *** | −3.764 *** | −4.076 *** | 2.504 *** | −4.310 *** | −4.695 *** |
(0.094) | (0.823) | (0.880) | (0.092) | (0.823) | (0.875) | |
Observations | 974 | 933 | 859 | 1016 | 969 | 893 |
R-squared | 0.090 | 0.359 | 0.362 | 0.106 | 0.361 | 0.366 |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | Ln_Oil | Ln_Oil | Ln_Coal | Ln_Coal | Ln_Gas | Ln_Gas |
CRI | −0.594 *** | - | −0.941 *** | - | −0.408 *** | - |
(0.043) | (0.086) | (0.053) | ||||
CRI_long | - | −0.626 *** | - | −0.831 *** | - | −0.501 *** |
(0.048) | (0.097) | (0.057) | ||||
lnpgdp | −0.008 | −0.041 | −0.117 | −0.159 | −0.068 | −0.121 ** |
(0.049) | (0.049) | (0.098) | (0.098) | (0.059) | (0.058) | |
urbanr | 2.610 *** | 3.164 *** | 0.834 | 1.368 ** | 2.134 *** | 2.863 *** |
(0.314) | (0.324) | (0.619) | (0.640) | (0.399) | (0.401) | |
indusr | 1.776 *** | 2.412 *** | −4.948 *** | −4.890 *** | 2.827 *** | 3.516 *** |
(0.338) | (0.346) | (0.735) | (0.735) | (0.408) | (0.407) | |
trader | −0.439 *** | −0.394 *** | −0.873 *** | −0.914 *** | −0.675 *** | −0.597 *** |
(0.064) | (0.064) | (0.126) | (0.125) | (0.077) | (0.074) | |
Constant | 0.818 ** | 0.546 | 3.690 *** | 3.864 *** | 1.055 ** | 0.739 |
(0.401) | (0.412) | (0.812) | (0.827) | (0.477) | (0.476) | |
Observations | 984 | 1022 | 943 | 980 | 944 | 980 |
R-squared | 0.291 | 0.266 | 0.249 | 0.216 | 0.227 | 0.242 |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | ECT | ECT | ECT | ECT | ECT | ECT |
CRI | 0.150 * | 0.313 *** | 0.297 *** | 0.199 ** | 0.280 *** | 0.289 *** |
(0.090) | (0.094) | (0.103) | (0.097) | (0.095) | (0.094) | |
vae | 1.547 *** | - | - | - | - | - |
(0.141) | ||||||
CRI × vae | −0.120 | - | - | - | - | - |
(0.080) | ||||||
pve | - | 0.614 *** | - | - | - | - |
(0.148) | ||||||
CRI × pve | - | −0.269 *** | - | - | - | - |
(0.088) | ||||||
gee | - | - | 0.809 *** | - | - | - |
(0.202) | ||||||
CRI × gee | - | - | −0.079 | - | - | - |
(0.101) | ||||||
rqe | - | - | - | 1.314 *** | - | - |
(0.171) | ||||||
CRI × rqe | - | - | - | −0.030 | - | - |
(0.091) | ||||||
rle | - | - | - | - | 1.122 *** | - |
(0.176) | ||||||
CRI × rle | - | - | - | - | −0.197 ** | - |
(0.089) | ||||||
cce | - | - | - | - | - | 0.989 *** |
(0.165) | ||||||
CRI × cce | - | - | - | - | - | −0.157 * |
(0.087) | ||||||
lnpgdp | 0.271 ** | 0.817 *** | 0.670 *** | 0.309 * | 0.321 * | 0.468 *** |
(0.132) | (0.147) | (0.175) | (0.159) | (0.179) | (0.167) | |
urbanr | −1.392 ** | −1.727 ** | −1.978 *** | −1.681 ** | −1.132 | −2.066 *** |
(0.651) | (0.703) | (0.698) | (0.673) | (0.709) | (0.677) | |
indusr | −1.383 | −8.062 *** | −6.999 *** | −5.646 *** | −6.207 *** | −6.512 *** |
(0.929) | (0.727) | (0.802) | (0.793) | (0.785) | (0.777) | |
trader | −0.538 *** | −0.971 *** | −0.866 *** | −0.977 *** | −0.949 *** | −0.931 *** |
(0.136) | (0.151) | (0.151) | (0.147) | (0.145) | (0.148) | |
Constant | 1.664 * | −0.607 | 0.164 | 2.887 ** | 2.707 ** | 2.129 |
(0.925) | (1.187) | (1.313) | (1.199) | (1.331) | (1.311) | |
Observations | 919 | 919 | 919 | 919 | 919 | 919 |
R-squared | 0.438 | 0.374 | 0.370 | 0.399 | 0.391 | 0.387 |
Country FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | 1st Stage | 2st Stage DV: ECT | 1st Stage | 2st Stage DV: ECT |
CRI | - | 1.287 *** | - | - |
(0.328) | ||||
CRI_long | - | - | - | 2.700 *** |
(0.743) | ||||
lnpgdp | −0.090 ** | 1.288 *** | −0.083 ** | 1.430 *** |
(0.040) | (0.127) | (0.036) | (0.152) | |
urbanr | −0.905 *** | −1.787 ** | −1.29 8 *** | 0.438 |
(0.247) | (0.833) | (0.224) | (1.305) | |
indusr | −1.124 *** | −7.416 *** | −2.098 *** | −2.870 |
(0.248) | (0.885) | (0.220) | (1.837) | |
trader | −0.216 *** | −0.173 | −0.402 *** | 0.582 |
(0.058) | (0.225) | (0.051) | (0.432) | |
lncoastline | 0.175 *** | - | 0.088 *** | - |
(0.018) | (0.016) | |||
Constant | 0.450 | −4.472 *** | 1.994 *** | −9.666 *** |
(0.339) | (1.138) | (0.308) | (2.278) | |
Observations | 842 | 842 | 873 | 873 |
R-squared | 0.298 | 0.282 | 0.357 | 0.026 |
Country FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Panel A Differential Impact of Energy Resource Scale | ||||
(1) | (2) | (3) | (4) | |
Variables | Resource-Rich | Resource-Rich | Resource-Poor | Resource-Poor |
CRI | 0.376 *** | 0.126 | ||
(0.121) | (0.141) | |||
CRI_long | 0.290 ** | 0.347 ** | ||
(0.141) | (0.145) | |||
Control | Yes | Yes | Yes | Yes |
Observations | 723 | 750 | 209 | 218 |
R-squared | 0.323 | 0.321 | 0.545 | 0.564 |
Country FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Panel B Differential impact of economic development scale | ||||
(5) | (6) | (7) | (8) | |
VARIABLES | economy-high | economy-high | Economy—low | economy-low |
CRI | 0.192 | 0.576 *** | ||
(0.155) | (0.102) | |||
CRI _long | −0.078 | 0.724 *** | ||
(0.161) | (0.111) | |||
Control | Yes | Yes | Yes | Yes |
Observations | 530 | 558 | 403 | 411 |
R-squared | 0.342 | 0.343 | 0.205 | 0.226 |
Country FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Panel A the Impact of the Business Cycle | ||||
(1) | (2) | (3) | (4) | |
Variables | Economic Boom | Economic Boom | Economic Recession | Economic Recession |
CRI | 0.092 | 0.342 *** | ||
(0.184) | (0.107) | |||
CRI _long | −0.013 | 0.399 *** | ||
(0.190) | (0.120) | |||
Control | Yes | Yes | Yes | Yes |
Observations | 246 | 282 | 687 | 687 |
R-squared | 0.189 | 0.207 | 0.393 | 0.393 |
Country FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Panel B The impact of oil price fluctuations | ||||
(5) | (6) | (7) | (8) | |
VARIABLES | Oil prices rise | Oil prices rise | Oil prices fall | Oil prices fall |
CRI | 0.275 ** | 0.436 *** | ||
(0.114) | (0.165) | |||
CRI _long | 0.353 *** | 0.360 ** | ||
(0.127) | (0.176) | |||
Control | Yes | Yes | Yes | Yes |
Observations | 606 | 625 | 327 | 344 |
R-squared | 0.352 | 0.358 | 0.373 | 0.365 |
Country FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Zheng, Y.; Mao, K. Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study. Energies 2021, 14, 4189. https://doi.org/10.3390/en14144189
Peng J, Zheng Y, Mao K. Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study. Energies. 2021; 14(14):4189. https://doi.org/10.3390/en14144189
Chicago/Turabian StylePeng, Jiaying, Yuhang Zheng, and Ke Mao. 2021. "Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study" Energies 14, no. 14: 4189. https://doi.org/10.3390/en14144189
APA StylePeng, J., Zheng, Y., & Mao, K. (2021). Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study. Energies, 14(14), 4189. https://doi.org/10.3390/en14144189