Geological Characterization of the 3D Seismic Record within the Gas Bearing Upper Miocene Sediments in the Northern Part of the Bjelovar Subdepression—Application of Amplitude Versus Offset Analysis and Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Settings of the Exploration Area
2.2. Input Data
2.3. Seismic Attribute and AVO Analysis
2.4. Artificial Neural Networks
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Velić, J.; Krasić, D.; Kovačević, I. Exploitation, reserves and transport of natural gas in the Republic of Croatia. Teh. Vjesn. Gaz. 2012, 13, 633–641. [Google Scholar]
- Farkaš Višontai, L.; Brusić, N.; Ilišević, I.; Novaković, N.; Jakovac, B.; Perić, M.; Križan, J. 20 years of gas production in the Adriatic [20 godina proizvodnje plina na Jadranu]. Naft. Plin. 2019, 39, 39–52. [Google Scholar]
- Hussein, M.; El-Ata, A.A.; El-Behiry, M. AVO analysis aids in differentiation between false and true amplitude responses: A case study of El Mansoura field, onshore Nile Delta, Egypt. J. Pet. Explor. Prod. Technol. 2020, 10, 969–989. [Google Scholar] [CrossRef][Green Version]
- Malvić, T.; Cvetković, M. Lithostratigraphic units in the Drava Depression (Croatian and Hungarian parts)—A correlation. Nafta 2013, 63, 27–33. [Google Scholar]
- Cvetković, M.; Matoš, B.; Rukavina, D.; Kolenković Močilac, I.; Saftić, B.; Baketarić, T.; Baketarić, M.; Vuić, I.; Stopar, A.; Jarić, A.; et al. Geoenergy potential of the Croatian part of Pannonian Basin: Insights from the reconstruction of the pre-Neogene basement unconformity. J. Maps 2019, 15, 651–661. [Google Scholar] [CrossRef][Green Version]
- Dolton, G.L. Pannonian Basin Province, Central Europe (Province 4808)—Petroleum Geology, Total Petroleum Systems, and Petroleum Resource Assessment; USGS: Reston, Virginia, 2006. [Google Scholar]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef][Green Version]
- Pavelić, D.; Kovačić, M. Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. Mar. Pet. Geol. 2018, 91, 455–469. [Google Scholar] [CrossRef]
- Royden, L. Late Cenozoic tectonics of the Pannonian Basin system. In The Pannonian Basin: A Study in Basin Evolution. AAPG Memoir 45; Royden, L.H., Horvath, F., Eds.; AAPG: Tulsa, OK, USA, 1988. [Google Scholar]
- Lučić, D.; Saftić, B.; Krizmanić, K.; Prelogović, E.; Britvić, V.; Mesić, I.; Tadej, J. The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Mar. Pet. Geol. 2001, 18, 133–147. [Google Scholar] [CrossRef]
- Malvić, T. Geological maps of Neogene sediments in the Bjelovar Subdepression (Northern Croatia). J. Maps 2011, 7, 304–317. [Google Scholar] [CrossRef]
- Ćorić, S.; Pavelić, D.; Rögl, F.; Mandić, O.; Vrabac, S.; Avanić, R.; Jerković, L.; Vranjković, A. Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys)The Pannonian Basin System (PBS) originated during the Early Miocene as a result of extensional processes between the Alpine-Carp. Geol. Croat. 2009, 62, 31–43. [Google Scholar] [CrossRef]
- Šimon, J. O nekim rezultatima regionalne korelacije litostratigrafskih jedinica u jugozapadnom području Panonskog bazena. Nafta 1973, 24, 623–630. [Google Scholar]
- Brcković, A.; Kovačević, M.; Cvetković, M.; Močilac, I.K.; Rukavina, D.; Saftić, B. Application of artificial neural networks for lithofacies determination based on limited well data. Cent. Eur. Geol. 2017, 60, 299–315. [Google Scholar] [CrossRef]
- Sheriff, R.E. Vertical and Lateral Seismic Resolution and Attenuation: Part 7. Geophysical Methods. In ME 10: Development Geology Reference Manual; Morton-Thompson, D., Woods, A.M., Eds.; AAPG: Tulsa, OK, USA, 1992; pp. 388–389. [Google Scholar]
- SEG Sweetness. Available online: https://wiki.seg.org/wiki/Sweetness (accessed on 25 February 2021).
- Knott, C.G., III. Reflexion and refraction of elastic waves, with seismological applications. London Edinburgh Dublin Philos. Mag. J. Sci. 1899, 48, 64–97. [Google Scholar] [CrossRef][Green Version]
- Zoeppritz, K. On the Reflection and Transmission of Seismic Waves at Surfaces of Discontinuity. In Classics of Elastic Wave Theory; Society of Exploration Geophysicists: Tulsa, OK, USA, 2007; pp. 363–376. [Google Scholar]
- Richards, P.G.; Frasier, C.W. Scattering of elastic waves from depth-dependent inhomogeneities. Geophysics 1976, 41, 441–458. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology: Theory and Methods; Freeman and Co.: San Francisco, CA, USA, 1980; Volumes I. & II. [Google Scholar]
- Ostrander, W.J. Plane-Wave Reflection Coefficients for Gas Sands at Nonnormal Angles of Incidence. Explor. Geophys. 1984, 49, 1580–1813. [Google Scholar] [CrossRef]
- Shuey, R.T. A simplification of the Zoeppritz equations. Geophysics 1985, 50, 609–614. [Google Scholar] [CrossRef]
- Veeken, P.C.H.; Rauch-Davies, M. AVO attribute analysis and seismic reservoir characterization. First Break 2006, 24, 41–52. [Google Scholar] [CrossRef]
- Simm, R.; White, R.; Uden, R. The anatomy of AVO crossplots. Lead. Edge 2000, 19, 150–155. [Google Scholar] [CrossRef]
- Rutherford, S.R.; Williams, R.H. Amplitude-versus-offset variations in gas sands. Geophysics 1989, 54, 680–688. [Google Scholar] [CrossRef]
- Castagna, J.P.; Swan, H.W. Principles of AVO crossplotting. Lead. Edge 1997, 16, 337–344. [Google Scholar] [CrossRef]
- Castagna, J.P.; Smith, S.W. Comparison of AVO indicators: A modeling study. Geophysics 1994, 59, 1849–1855. [Google Scholar] [CrossRef]
- Ross, C.P.; Kinman, D.L. Nonbright-spot AVO: Two examples. Geophysics 1995, 60, 1398–1408. [Google Scholar] [CrossRef]
- Castagna, J.P.; Swan, H.W.; Foster, D.J. Framework for AVO gradient and intercept interpretation. Geophysics 1998, 63, 948–956. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Qu, D.; Frykman, P.; Stemmerik, L.; Mosegaard, K.; Nielsen, L. Upscaling of outcrop information for improved reservoir modelling—Exemplified by a case study on chalk. Pet. Geosci. 2021, petgeo2020-126. [Google Scholar] [CrossRef]
- Iturrarán-Viveros, U.; Muñoz-García, A.M.; Parra, J.O.; Tago, J. Validated artificial neural networks in determining petrophysical properties: A case study from Colombia. Interpretation 2018, 6, T1067–T1080. [Google Scholar] [CrossRef]
- Okon, A.N.; Adewole, S.E.; Uguma, E.M. Artificial neural network model for reservoir petrophysical properties: Porosity, permeability and water saturation prediction. Model. Earth Syst. Environ. 2020. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.; Nguele, R.; Sasaki, K. Integrated workflow in 3D geological model construction for evaluation of CO2 storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. Int. J. Greenh. Gas. Control. 2019, 90, 102826. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y. Integrated modelling framework for enhancement history matching in fluvial channel sandstone reservoirs. Upstream Oil Gas. Technol. 2021, 6, 100027. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.; Sasaki, K. Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Sci. Rep. 2020, 10, 18204. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.; Sasaki, K. Impact of a new geological modelling method on the enhancement of the CO 2 storage assessment of E sequence of Nam Vang field, offshore Vietnam. Energy Sources Part. A Recover. Util. Environ. Eff. 2020, 42, 1499–1512. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Asfahani, J.; Ahmad, Z.; Ghani, B.A. Self organizing map neural networks approach for lithologic interpretation of nuclear and electrical well logs in basaltic environment, Southern Syria. Appl. Radiat. Isot. 2018, 137, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Dixit, N.; McColgan, P.; Kusler, K. Machine Learning-Based Probabilistic Lithofacies Prediction from Conventional Well Logs: A Case from the Umiat Oil Field of Alaska. Energies 2020, 13, 4862. [Google Scholar] [CrossRef]
- Bauer, K.; Muñoz, G.; Moeck, I. Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self-organizing maps. Geophys. J. Int. 2012, 189, 984–998. [Google Scholar] [CrossRef][Green Version]
- Kamenski, A.; Cvetković, M.; Kolenković Močilac, I.; Saftić, B. Lithology prediction in the subsurface by artificial neural networks on well and 3D seismic data in clastic sediments: A stochastic approach to a deterministic method. GEM Int. J. Geomath. 2020, 11, 8. [Google Scholar] [CrossRef][Green Version]
- Cvetkovic, M.; Velic, J.; Malvic, T. Application of neural networks in petroleum reservoir lithology and saturation prediction. Geol. Croat. 2009, 62, 115–121. [Google Scholar] [CrossRef]
- Novak Zelenika, K.; Novak Mavar, K.; Brnada, S. Comparison of the Sweetness Seismic Attribute and Porosity–Thickness Maps, Sava Depression, Croatia. Geosciences 2018, 8, 426. [Google Scholar] [CrossRef][Green Version]
- Singh, D. AVO Techniques: Advantages, Limitations and Future Prospects. In Proceedings of the 8th Biennial International Conference & Exposition on Petroleum Geophysics, Hyderabad, India, 1–3 February 2010; pp. 1–3. [Google Scholar]
- Chopra, S. Expert Answers | October 2004 | CSEG RECORDER. Available online: https://csegrecorder.com/columns/view/expert-answers-200410 (accessed on 23 May 2021).
Neural Network Architecture | Training Error (%) | Test Error (%) |
---|---|---|
2 × 2 SOANN | 5.2 | 8.4 |
3 × 3 SOANN | 3.4 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ružić, T.; Cvetković, M. Geological Characterization of the 3D Seismic Record within the Gas Bearing Upper Miocene Sediments in the Northern Part of the Bjelovar Subdepression—Application of Amplitude Versus Offset Analysis and Artificial Neural Network. Energies 2021, 14, 4161. https://doi.org/10.3390/en14144161
Ružić T, Cvetković M. Geological Characterization of the 3D Seismic Record within the Gas Bearing Upper Miocene Sediments in the Northern Part of the Bjelovar Subdepression—Application of Amplitude Versus Offset Analysis and Artificial Neural Network. Energies. 2021; 14(14):4161. https://doi.org/10.3390/en14144161
Chicago/Turabian StyleRužić, Tihana, and Marko Cvetković. 2021. "Geological Characterization of the 3D Seismic Record within the Gas Bearing Upper Miocene Sediments in the Northern Part of the Bjelovar Subdepression—Application of Amplitude Versus Offset Analysis and Artificial Neural Network" Energies 14, no. 14: 4161. https://doi.org/10.3390/en14144161