Method for Determining the Utilization Rate of Thin-Deck Shearers Based on Recorded Electromotor Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. The “Mikrus” System
2.2. R Functions Used in Calculations
3. Results and Discussion
3.1. Data Preparation
- Tsu—time (unix timestamp);
- ouf—current of the shearing organ motor A;
- npf—current of the auxiliary drive motor A;
- ngf—current of the main drive motor A;
- nuf—current of the stacker motor A.
3.2. Preliminary Data Analysis—A Study of Current Intensity Distributions
3.3. Data Illustration
3.4. Shearer Status Analysis
3.5. Structure of Machine Operating States
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, T.; Zhang, Z.; Tan, Y.; Shi, C.; Wei, P.; Li, Q. An innovative approach to thin coal seam mining of complex geological conditions by pressure regulation. Int. J. Rock Mech. Min. Sci. 2014, 71, 249–257. [Google Scholar] [CrossRef]
- Lorenz, U. Coal as fuel with good prospects/Węgiel jako paliwo z przyszłością. Przegląd Gór. 2005, 10, 8–14. (In Polish) [Google Scholar]
- Turek, M. Do not leave thin seams/Nie pozostawiajmy pokładów cienkich. Przegląd Gór. 2005, 10, 15–19. (In Polish) [Google Scholar]
- Zhang, L.M. The Current Situation and Developing Trend of Extremely Thin Coal Seam Mining of China. Appl. Mech. Mater. 2013, 295–298, 2918–2923. [Google Scholar] [CrossRef]
- Wang, J. Development and prospect on fully mechanized mining in Chinese coal mines. Int. J. Coal Sci. Technol. 2014, 1, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Mamaikin, O.; Kicki, J.; Salli, S.; Horbatova, V. Coal industry in the context of Ukraine economic security. Min. Miner. Depos. 2017, 11, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Griadushchiy, Y.; Korz, P.; Koval, O.; Bondarenko, V.; Dychkovskiy, R. Advanced experience and direction of mining of thin coal seams in Ukraine. In Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum; Taylor & Francis/Balkema: London, UK, 2007; pp. 1–7. [Google Scholar]
- Pavlenko, I.; Salli, V.; Bondarenko, V.; Dychkovskiy, R.; Piwniak, G. Limits to economic viability of extraction of thin coal seams in Ukraine. In Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum; Taylor & Francis/Balkema: London, UK, 2007; pp. 129–132. [Google Scholar]
- Korski, J.; Bednarz, R. Low shearer longwall system as an effective option to plough systems/ Kombajnowy system ścianowy jako efektywna alternatywa dla strugów ścianowych. Mech. Autom. Gór. 2012, 9, 31–38. (In Polish) [Google Scholar]
- Chai, W.Z. The lectotype of the thin coal bed synthesis mining equipment and the technological parameter optimizes. Sci. Technol. Tongmei 2007, 2, 2–4. [Google Scholar]
- Zhai, X.; Shao, Q.; Li, B.; Li, X. Shearer mining application to soft thin-seam with hard roof. Procedia Earth Planet. Sci. 2009, 1, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Tu, S.; Bai, Q. Practice and prospects of fully mechanized mining technology for thin coal seams in China. J. S. Afr. Inst. Min. Metall. 2012, 112, 161–170. [Google Scholar]
- Lööw, J.; Abrahamsson, L.; Johansson, J. Mining 4.0—The Impact of New Technology from a Work Place Perspective. Min. Metall. Explor. 2019, 36, 701–707. Available online: https://link.springer.com/article/10.1007/s42461-019-00104-9 (accessed on 22 May 2021). [CrossRef] [Green Version]
- Bezerra, F.; Wainer, J. Anomaly detection algorithms in business process logs. In Proceedings of the Tenth International Conference on Enterprise Information Systems—Volume 2: ICEIS, INSTICC, Barcelona, Spain, 12–16 June 2008; SciTePress: Setúbal, Portugal; pp. 11–18. [Google Scholar] [CrossRef]
- Böhmer, K.; Rinderle-Ma, S. Automatic Signature Generation for Anomaly Detection in Business Process Instance Data. In Enterprise, Business-Process and Information Systems Modeling; Schmidt, R., Guédria, W., Bider, I., Guerreiro, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 196–211. [Google Scholar]
- Chen, D.; Panfilenko, D.V.; Khabbazi, M.R.; Sonntag, D. A model-based approach to qualified process automation for anomaly detection and treatment. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–8. [Google Scholar]
- Nolle, T.; Seeliger, A.; Mühlhäuser, M. Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders; Discovery Science; Calders, T., Ceci, M., Malerba, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 442–456. [Google Scholar]
- Brzychczy, E.; Gackowiec, P.; Liebetrau, M. Data Analytic Approaches for Mining Process Improvement—Machinery Utilization Use Case. Resources 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, X.; Mitri, H.S.; Wang, S.; Wei, W. Identification of large-scale goaf instability in undergroundmine using particle swarm optimization and support vector machine. Int. J. Min. Sci. Technol. 2013, 23, 701–707. [Google Scholar] [CrossRef]
- Hargrave, C.O.; James, C.A.; Ralston, J.C. Infrastructure-based localisation of automated coal mining equipment. Int. J. Coal Sci. Technol. 2017, 4, 252–261. [Google Scholar] [CrossRef]
- Jedliński, Ł.; Gajewski, J. Optimal selection of signal features in the diagnostics of mining head tools condition. Tunn. Undergr. Space Technol. 2019, 84, 451–460. [Google Scholar] [CrossRef]
- Bodlak, M.; Kudełko, J.; Zibrow, A. Machine Learning in predicting the extent of gas and rock outburst. E3S Web Conf. 2018, 71. [Google Scholar] [CrossRef]
- Verma, A.K.; Kishore, K.; Chatterjee, S. Prediction Model of Longwall Powered Support Capacity Using Field Monitored Data of a Longwall Panel and Uncertainty-Based Neural Network. Geotech. Geol. Eng. 2016, 34, 2033–2052. [Google Scholar] [CrossRef]
- Deb, D.; Kumar, A.; Rosha, R.P.S. Forecasting shield pressures at a longwall face using artificial neural networks. Geotech. Geol. Eng. 2006, 24, 1021–1037. [Google Scholar] [CrossRef]
- Mahdevari, S.; Shahriar, K.; Sharifzadeh, M.; Tannant, D.D. Stability prediction of gate roadways in longwall mining using artificial neural networks. Neural Comput. Appl. 2017, 28, 3537–3555. [Google Scholar] [CrossRef]
- Kopacz, M. The impact assessment of quality parameters of coal and waste rock on the value of mining investment projects—Hard coal deposits. Miner. Resour. Manag. 2015, 31, 161–188. [Google Scholar] [CrossRef] [Green Version]
- Jonek-Kowalska, I.; Turek, M. Dependence of total production costs on production and infrastructure parameters in the polish hard coal mining industry. Energies 2017, 10, 1480. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.; Liu, Q.; Li, X.; Luo, X.; Wan, Y.L. Using data mining techniques to analyze the influencing factor ofunsafe behaviors in Chinese underground coal mines. Resour. Policy 2018, 59, 210–216. [Google Scholar] [CrossRef]
- He, Z.; Wu, Q.; Wen, L.; Fu, G. A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal mines. Saf. Sci. 2019, 111, 154–166. [Google Scholar] [CrossRef]
- FAMUR. Available online: https://famur.com/kompleks-mikrus-1 (accessed on 22 May 2021).
- Dziura, J. Mikrus Complex—A new technology of extraction low decks/Kompleks Mikrus—Nowa technologia wybierania pokładów niskich. Masz. Gór. 2012, 3, 3–11. (In Polish) [Google Scholar]
- The Comprehensive R Archive Network. Available online: https://cran.r-project.org/ (accessed on 22 May 2021).
- GGPLOT2. Available online: https://ggplot2.tidyverse.org/ (accessed on 22 May 2021).
- DPLYR. Available online: https://dplyr.tidyverse.org/ (accessed on 22 May 2021).
- Package “Runner”. Running Operations for Vectors. Available online: https://cran.r-project.org/web/packages/runner/runner.pdf (accessed on 22 May 2021).
- Replacing NAs with Latest Non-NA Value. Available online: https://stackoverflow.com/questions/7735647/replacing-nas-with-latest-non-na-value (accessed on 22 May 2021).
- Jaszczuk, M. The influence of the load condition shearer on the possibility of obtaining a high concentration of mining Wpływ stanu obciążenia kombajnu ścianowego na możliwość uzyskania wysokiej koncentracji wydobycia, Gliwice. Zesz. Nauk. Politech. Śląskiej 1999, 240, 19–25. (In Polish) [Google Scholar]
- Kęsek, M. Analysing data with the R programming language to control machine operation/ Analiza danych z wykorzystaniem języka R w kontroli pracy maszyn. Inżynieria Miner. 2019, 1, 231–235. [Google Scholar] [CrossRef]
- Kęsek, M.; Ogrodnik, R. Computer aided monitoring and analysis of machine work/Komputerowe monitorowanie i analiza pracy maszyn. Mark. Rynek 2018, 9, 383–395. (In Polish) [Google Scholar]
Parameter | Value |
---|---|
Cutting height | 1100–1700 mm |
Longwall length | 260 m |
Longitudinal longwall inclination | ±35° |
Transverse longwall inclination | ±20° |
Cutting head diameter | 1200 ÷ 1600 mm |
Working depth | 600 mm |
Supply voltage | 3300 V |
Overcut and undercut | 50 mm |
Minimum height of the cutting-loading head above the conveyor | 850 mm |
Minimum height in the working field | 1000 mm |
Maximum total installed power | 633 kW |
Maximum power of cutting head motor | 500 kW |
Maximum feed motor power | 2 × 60 kW |
Maximum winch motor power | 13 kW |
Maximum motor power of the conveyor drive | 2 × 200/400 kW |
Feed force (0–50 Hz) | 2 × 320 kN |
Feed rate | 0–27 m/min |
Longwall conveyor S-850N with the height of trough profile | 220 mm |
Conveyor scraper width | 800 mm |
Total weight of cutting and loading head | approx. 19.2 tons |
Powered roof support Tagor-08,/16-POz | 0.85 m–1.6 m |
Assumed hourly capacity for 40 MPa coal strength | 560 t/h |
Assumed hourly capacity for 10 MPa coal strength | 800 t/h |
tsu | ouf | npf | ngf | nuf |
---|---|---|---|---|
1364880939 | 31 | 32.3 | 32.4 | 16 |
1364880940 | 31 | 32.3 | 33.0 | 16 |
1364880941 | 31 | 33.6 | 33.6 | 16 |
1364880942 | 30 | 37.3 | 36.3 | 16 |
1364880943 | 32 | 41.6 | 39.5 | 16 |
1364880944 | 39 | 41.6 | 40.1 | 16 |
1364880945 | 48 | 41.6 | 39.1 | 16 |
1364880946 | 39 | 40.3 | 39.6 | 16 |
ngf\ouf | 0 | 0–33 | >33 |
---|---|---|---|
0 | Off | Idle | X |
>32 | Maneuvering | Maneuvering | Extraction |
Case | Share (%) |
---|---|
main > auxiliary | 52 |
main = auxiliary | 1 |
main < auxiliary | 47 |
Interval | Value |
---|---|
(−∞, −12.5> | 0.2 |
(−12.5, 2> | 0.4 |
(−2, 2) | 0.5 |
<2, 12.5) | 0.6 |
<12.5, ∞) | 0.8 |
Observation Day No. | Off | M | I | E |
---|---|---|---|---|
36 | 96.77 | 0.08 | 0.00 | 3.15 |
37 | 84.90 | 4.31 | 1.12 | 9.67 |
38 | 83.55 | 2.74 | 1.35 | 12.36 |
39 | 78.52 | 5.80 | 2.79 | 12.89 |
40 | 89.93 | 0.85 | 0.75 | 8.47 |
41 | 100 | 0 | 0 | 0 |
42 | 100 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kęsek, M.; Ogrodnik, R. Method for Determining the Utilization Rate of Thin-Deck Shearers Based on Recorded Electromotor Loads. Energies 2021, 14, 4059. https://doi.org/10.3390/en14134059
Kęsek M, Ogrodnik R. Method for Determining the Utilization Rate of Thin-Deck Shearers Based on Recorded Electromotor Loads. Energies. 2021; 14(13):4059. https://doi.org/10.3390/en14134059
Chicago/Turabian StyleKęsek, Marek, and Romuald Ogrodnik. 2021. "Method for Determining the Utilization Rate of Thin-Deck Shearers Based on Recorded Electromotor Loads" Energies 14, no. 13: 4059. https://doi.org/10.3390/en14134059
APA StyleKęsek, M., & Ogrodnik, R. (2021). Method for Determining the Utilization Rate of Thin-Deck Shearers Based on Recorded Electromotor Loads. Energies, 14(13), 4059. https://doi.org/10.3390/en14134059