Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island
Abstract
:1. Introduction
Case Study: Gran Canaria Island, Spain
2. Methods
- Detection of dams and creation of connections (See Section 2.2):
- (a)
- Detection of existing dams and their georeferencing on the map. Processing of previous data on dams to calculate their potential. Classification of the territory into ravine basins and interbasins.
- (b)
- Creation of a large dataset with all possible connections or pairings (combinations).
- Calculation of theoretical potential and application of acceptability constraints (See Section 2.3):
- (a)
- Calculation of the theoretical energy storage potential, without applying any constraints.
- (b)
- Application of the technical acceptability constraints (maximum distance and minimum height between dams) to the dam pairings and attainment of a new data set.
- Optimization (See Section 2.4):
- (a)
- Optimization of the connections resulting from step two: one connection per dam, maximizing the stored energy.
- Application of constraints (See Section 2.5):
- (a)
- Application of the rest of the technical restrictions previously defined: maximum volume, minimum volume, minimum stored energy, maximum height above sea level (altitude), maximum head-distance ratio and distance to the electricity grid, etc.
- (b)
- Application of environmental restrictions: discarding those connections with any of its dams included in any of the environmentally protected areas (Canary Islands Network of Protected Natural Spaces, Natura 2000 Network and Biosphere Reserve) and attainment of the list of selected connections.
- Calculation of the viable storage potential (See Section 2.6):
- (a)
- Calculation of the viable storage potential of the selected connections.
2.1. Main Model Assumptions
2.2. Detecting Dams and Creating Connections
2.2.1. Detection of Existing Dams
2.2.2. Creation of a database of Possible Connections
2.3. Calculation of Theoretical Potential and Application of Acceptability Constraints
2.3.1. Calculation of Potential before Constraints
- = connection energy (Joules).
- = water density (Kg/m3).
- g = acceleration of gravity (m/s2).
- = net height difference (m), after calculation of head losses.
- = volume of water to be transferred, calculated as the smaller volume of the two dams involved (m3)
- η = pumped storage plant efficiency, assumed to be 0.87.
2.3.2. Technical Acceptability Restrictions
2.4. Optimization
One Connection Per Dam, Maximizing Stored Energy
2.5. Application of Restrictions
2.5.1. Application of the Remaining Technical Restrictions
2.5.2. Distance to the Electricity Grid
2.5.3. Environmental Constraints
2.6. Calculation of Viable Storage Potential
3. Application to the Case of Gran Canaria
3.1. Dataset Choice and Connection Detection
- -
- Natura 2000 Network: European ecological network of biodiversity conservation areas, either Special Areas of Conservation (SAC) or Special Protection Areas for Birds (SPAB) (see Figure 6). 50% of the island’s land area belongs to one of the two categories of this protection instrument.
- -
- Canary Islands Network of Biosphere Reserves: UNESCO project to conserve biodiversity in a sustainable way. The island of Gran Canaria has 46% of its territory declared a Biosphere Reserve (see Figure 6.). This environmental protection is quite restrictive and covers land and sea. Some 33% of the island’s dams are located in this category.
- -
- Canary Islands Network of Protected Natural Spaces: It should contain the main habitats and centres of diversity (see Figure 6). It includes several categories: National, Natural and Rural Parks; Special and Integral Nature Reserves; Natural Monuments; Protected Landscapes; and Sites of Scientific Interest. 43% of the island’s surface area is in one of the above categories and 31.88% of the dams are located in this area. This instrument contemplates a greater dispersion in terms of the territories it protects.
3.2. Distance to Grid Connections
3.3. Overall Potential Results
4. Conclusions
Possible Future Ameliorations
Author Contributions
Funding
Conflicts of Interest
References
- International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2020. 2020. Available online: https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf (accessed on 10 March 2021).
- Yang, W.; Yang, J. Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment. Appl. Energy 2019, 237, 720–732. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Zhou, Y.; Clarke, L.E.; Edmonds, J.A. Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints. Appl. Energy 2018, 213, 22–30. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- de Andrade Furtado, G.C.; Amarante Mesquita, A.L.; Morabito, A.H.; Hendrick, P.; Hunt, J.D. Using hydropower waterway locks for energy storage and renewable energies integration. Appl. Energy 2020, 275, 115361. [Google Scholar] [CrossRef]
- Jurasz, J.; Mikulik, J.; Krzywda, M.; Ciapała, B.; Janowski, M. Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation. Energy 2018, 144, 549–563. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Barbour, E.; Wilson, I.G.; Radcliffe, J.; Ding, Y.; Li, Y. A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 2016, 61, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Palizban, O.; Kauhaniemi, K. Energy storage systems in modern grids—Matrix of technologies and applications. J. Energy Storage 2016, 6, 248–259. [Google Scholar] [CrossRef]
- Rogeau, A.; Girard, R.; Kariniotakis, G. A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale. Appl. Energy 2017, 197, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, N.; Makian, H.; Breyer, C. A GIS-based method to identify potential sites for pumped hydro energy storage-Case of Iran. Energy 2019, 169, 854–867. [Google Scholar] [CrossRef]
- Soha, T.; Munkácsy, B.; Harmat, Á.; Csontos, C.; Horváth, G.; Tamás, L.; Csüllög, G.; Daróczi, H.; Sáfián, F.; Szabó, M. GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features. Energy 2017, 141, 1363–1373. [Google Scholar] [CrossRef]
- Fitzgerald, N.; Arántegui, R.L.; McKeogh, E.; Leahy, P. A GIS-based model to calculate the potential for transforming conventional hydropower schemes and non-hydro reservoirs to pumped hydropower schemes. Energy 2012, 41, 483–490. [Google Scholar] [CrossRef]
- Gimeno-Gutiérrez, M.; Lacal-Arántegui, R. Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs. Renew. Energy 2015, 75, 856–868. [Google Scholar] [CrossRef]
- Lu, X.; Wang, S. A GIS-based assessment of Tibet’s potential for pumped hydropower energy storage. Renew. Sustain. Energy Rev. 2017, 69, 1045–1054. [Google Scholar] [CrossRef] [Green Version]
- Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al-Alami, A.H. Critical review of energy storage systems. Energy 2021, 214, 118987. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Groppi, D.; Garcia, D.A. Open data and energy analytics-An analysis of essential information for energy system planning, design and operation. Energy 2020, 213, 118803. [Google Scholar] [CrossRef]
- Red Eléctrica de España SAU. The Spanish Electricity System 2019. Available online: https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2019/inf_sis_elec_ree_2019_v2.pdf (accessed on 10 March 2021).
- Canary Islands Institute of Statistics (ISTAC). Canary Energy Yearbook 2019. Available online: http://www.gobiernodecanarias.org/istac/jaxi-istac/menu.do?uripub=urn:uuid:131cf873-66a9-408d-8cfa-537d6be05067 (accessed on 10 March 2021).
- Government of Spain. Energy Storage Strategy 2021:116. Available online: https://www.miteco.gob.es/es/prensa/estrategiadealmacenamientoenergetico_tcm30-522655.pdf (accessed on 10 March 2021).
- Island Water Council of Gran Canaria. Dams of Gran Canaria. n.d. Available online: http://www.aguasgrancanaria.com/ (accessed on 10 March 2021).
- Red Eléctrica Infraestructuras en Canarias SAU. Chira Pumped-storage Hydroelectric Power Station-soria. Reformed Construction Project. Amended I 2018.
- Bueno, C.; Carta, J.A. Technical–economic analysis of wind-powered pumped hydrostorage systems. Part I: Model development. Sol. Energy 2005, 78, 382–395. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J.A. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew. Sustain. Energy Rev. 2006, 10, 312–340. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J.A. Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: Model application to the island of El Hierro. Sol. Energy 2005, 78, 396–405. [Google Scholar] [CrossRef]
- Portero, U.; Velázquez, S.; Carta, J.A. Sizing of a wind-hydro system using a reversible hydraulic facility with seawater. A case study in the Canary Islands. Energy Convers. Manag. 2015, 106, 1251–1263. [Google Scholar] [CrossRef]
- Padrón, S.; Medina, J.F.; Rodríguez, A. Analysis of a pumped storage system to increase the penetration level of renewable energy in isolated power systems. Gran Canaria: A case study. Energy 2011, 36, 6753–6762. [Google Scholar] [CrossRef]
- Arántegui, R.L.; Fitzgerald, N.; Leahy, P. Pumped-hydro energy storage: Potential for Transformation from Single Dams.Analysis of the Potential for Transformation of Non-Hydropower Dams and Reservoir Hydropower Schemes into Pumping Hydropower Schemes in Eu-rope n.d. Available online: https://doi.org/10.2790/44844 (accessed on 10 March 2021).
- Katsaprakakis, D.A.; Christakis, D.G. Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study. Energy 2014, 66, 470–486. [Google Scholar] [CrossRef]
- Rauf, H.; Gull, M.S.; Arshad, N. Complementing hydroelectric power with floating solar PV for daytime peak electricity demand. Renew. Energy 2020, 162, 1227–1242. [Google Scholar] [CrossRef]
- Sanchez, R.G.; Kougias, I.; Moner-Girona, M.; Fahl, F.; Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 2021, 169, 687–699. [Google Scholar] [CrossRef]
- Mousavi, N.; Kothapalli, G.; Habibi, D.; Khiadani, M.; Das, C.K. An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses. Appl. Energy 2019, 247, 228–236. [Google Scholar] [CrossRef]
- Mataix, C. Mecanica de Fluidos y Maquinas Hidraulicas [Fluid Mechanics and Hydraulic Machines], 2nd ed.; Ediciones del Castillo, S.A.: Madrid, Spain, 1982. [Google Scholar]
- Akçay, Y.; Li, H.; Xu, S.H. Greedy algorithm for the general multidimensional knapsack problem. Ann. Oper. Res. 2007, 150, 17–29. [Google Scholar] [CrossRef]
- Kucukali, S. Finding the most suitable existing hydropower reservoirs for the development of pumped-storage schemes: An integrated approach. Renew. Sustain. Energy Rev. 2014, 37, 502–508. [Google Scholar] [CrossRef]
- Zheng, Y.; Sahraei-Ardakani, M. Leveraging existing water and wastewater infrastructure to develop distributed pumped storage hydropower in California. J. Energy Storage 2021, 34, 102204. [Google Scholar] [CrossRef]
- Ansar, A.; Flyvbjerg, B.; Budzier, A.; Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 2014, 69, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Cartográfica de Canarias SA. IDE Canarias Viewer GRAFCAN Version 4.5.1 n.d. Available online: https://www.grafcan.es/ (accessed on 10 March 2021).
- Hunt, J.D.; Byers, E.; Riahi, K.; Langan, S. Comparison between seasonal pumped-storage and conventional reservoir dams from the water, energy and land nexus perspective. Energy Convers. Manag. 2018, 166, 385–401. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Zhu, Y.; Wang, D.; Liu, J. Modeling, planning, application and management of energy systems for isolated areas: A review. Renew. Sustain. Energy Rev. 2018, 82, 460–470. [Google Scholar] [CrossRef]
- Botelho, A.; Ferreira, P.; Lima, F.; Pinto, L.M.C.; Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 2017, 70, 896–904. [Google Scholar] [CrossRef]
Name | Initials | Description |
---|---|---|
Type 1 | T1 | Pairs formed by existing dams |
Parameter | Type of Parameter | Limit | Default Value |
---|---|---|---|
Head between dams | Technical acceptability | Minimum | 30 m |
Distance between dams | Technical acceptability | Maximum | 5000 m |
Parameter | Limit | Default Value |
---|---|---|
Volume | Minimum | 0 m3 |
Volume | Maximum | - |
Grid distance | Maximum | 12,000 m |
Altitude | Maximum | 2000 m |
Energy | Minimum | 1000 kWh |
Head/Distance ratio | Minimum | 0.1 |
Restriction | Criterion |
---|---|
SAC zone (Natura 2000 Network) | Non-inclusion |
SPAB zone (Natura 2000 Network) | Non-inclusion |
Protected Natural Spaces | Non-inclusion |
Biosphere Reserve | Non-inclusion |
Distance (km) | Frequency | Percentage (%) |
---|---|---|
<1 | 6 | 23.08 |
1–3 | 7 | 26.92 |
3–5 | 7 | 26.92 |
5–7 | 1 | 3.85 |
>7 | 5 | 19.23 |
Pairing N° | Name of Dam A | Name of Dam B | Name of Dam A Basin | Name of Dam B Basin | Stored Energy (MWh) | Storage Power (MW) | Distance between Dams (m) | Height between Dams (m) | Distance to Power Supply (m) |
---|---|---|---|---|---|---|---|---|---|
686 | Chira | Soria | Arguineguín ravine basin | Arguineguín ravine basin | 4818.33 | 219.01 | 2531 | 265 | 726 |
1317 | El Parralillo | El Vaquero | La Aldea ravine basin | La Aldea-Agaete interbasin | 560.98 | 25.49 | 3968 | 478 | 9101 |
1916 | La Umbría | Lezcano II | Tenoya-Guiniguada interbasin | Tenoya ravine basin | 444.88 | 20.22 | 3770 | 230 | 3999 |
1231 | El Mulato | La Cueva de Las Niñas | Mogán ravine basin | Arguineguín ravine basin | 392.64 | 17.84 | 2550 | 114 | 2183 |
328 | Barranco Hondo and Cuevas Blancas | Tirajana | Tirajana ravine basin | Tirajana ravine basin | 292.98 | 13.31 | 1300 | 180 | 6465 |
2007 | Las Hoyas | Los Pérez | Agaete ravine basin | Agaete ravine basin | 228.66 | 10.39 | 1581 | 70 | 7503 |
387 | Barranco Hondo-Parrales | Tamadaba | Agaete-Gáldar interbasin | Agaete ravine basin | 204.54 | 9.29 | 3474 | 721 | 3029 |
1980 | Las Garzas | Los Mondragones | Gáldar ravine basin | Moya ravine basin | 197.54 | 8.97 | 3243 | 129 | 713 |
602 | Chamoriscán | La Gambuesa | Maspalomas ravine basin | Maspalomas ravine basin | 191.88 | 8.72 | 4565 | 48 | 8216 |
105 | Ariñez | La Siberia | Guiniguada ravine basin | Guiniguada ravine basin | 177.14 | 8.05 | 3373 | 314 | 2137 |
164 | Ayagaures | Fataga | Maspalomas ravine basin | Maspalomas ravine basin | 134.11 | 6.09 | 4752 | 130 | 8728 |
718 | Cuevas Blancas | La Lechucilla | Guayadeque ravine basin | Guiniguada ravine basin | 119.02 | 5.41 | 2719 | 339 | 3903 |
949 | El Callejón | Los Dolores-Casablanca | Azuaje-Tenoya interbasin | Azuaje-Tenoya interbasin | 109.45 | 4.97 | 2532 | 201 | 3434 |
1383 | El Pinto I | Los Jiménez-Arucas | Azuaje-Tenoya interbasin | Azuaje-Tenoya interbasin | 100.82 | 4.58 | 1981 | 75 | 1806 |
212 | Barranco Hondo | El Calabozo | Gáldar-Moya interbasin | Gáldar-Moya interbasin | 92.01 | 4.18 | 2415 | 201 | 499 |
1517 | El Piquillo | Satautejo | Guiniguada ravine basin | Guiniguada ravine basin | 78.57 | 3.57 | 4938 | 339 | 3856 |
2058 | Lezcano II | Piletas | Tenoya ravine basin | Tenoya-Guiniguada interbasin | 57.33 | 2.60 | 3648 | 52 | 3085 |
1715 | Gañanías | Toronjo | Guiniguada ravine basin | Guiniguada ravine basin | 53.86 | 2.44 | 3965 | 343 | 514 |
1592 | El Vaquero | Los Lugarejos | La Aldea-Agaete interbasin | Agaete ravine basin | 41.07 | 1.86 | 3490 | 35 | 7890 |
2120 | Los Betancores | Los Jorges | Maspalomas-Arguineguín interbasin | Maspalomas-Arguineguín interbasin | 40.29 | 1.83 | 2632 | 100 | 2599 |
1071 | El Conde | Valerón | Gáldar ravine basin | Gáldar-Moya interbasin | 36.90 | 1.67 | 2235 | 101 | 430 |
2332 | Tamaraceite | Tenoya I | Tenoya-Guiniguada interbasin | Tenoya ravine basin | 24.95 | 1.13 | 3203 | 129 | 949 |
404 | Cabo Verde | El Conde | Moya-Azuaje interbasin | Gáldar ravine basin | 14.53 | 0.66 | 4252.91 | 111 | 1260 |
1268 | El Palmito-La Marquesa | El Pinto II | Azuaje-Tenoya interbasin | Azuaje-Tenoya interbasin | 13.03 | 0.59 | 1103 | 33 | 2765 |
2071 | Lomo de Perera | Lomo Gordo | Maspalomas ravine basin | Maspalomas ravine basin | 11.14 | 0.50 | 1481 | 32 | 2331 |
1073 | El Cortijo | El Hormiguero | Azuaje-Tenoya interbasin | Gáldar-Moya interbasin | 6.52 | 0.29 | 4064 | 45 | 4132 |
Pairing N° | Name of Dam A | Name of Dam B | Name of Dam A Basin | Name of Dam B Basin | Stored Energy (MWh) | Stored Power (MW) | Distance between Dams (m) | Height between Dams (m) | Distance to Power Supply (m) |
---|---|---|---|---|---|---|---|---|---|
686 | Chira | Soria | Arguineguín ravine basin | Arguineguín ravine basin | 4818.34 | 219.02 | 2531 | 265 | 726 |
1317 | El Parralillo | El Vaquero | La Aldea ravine basin | La Aldea-Agaete interbasin | 560.98 | 25.50 | 3968 | 478 | 9101 |
328 | Barranco Hondo and Cuevas Blancas | Tirajana | Tirajana ravine basin | Tirajana ravine basin | 292.98 | 13.32 | 1300 | 180 | 6465 |
387 | Barranco Hondo-Parrales | Tamadaba | Agaete-Gáldar interbasin | Agaete ravine basin | 204.55 | 9.30 | 3474 | 721 | 3029 |
718 | Cuevas Blancas | La Lechucilla | Guayadeque ravine basin | Guiniguada ravine basin | 119.02 | 5.41 | 2719 | 339 | 3903 |
Name | Stored Power (MWh) | Name | Stored Power (MWh) | Name | Stored Power (MWh) | Name | Stored Power (MWh) |
---|---|---|---|---|---|---|---|
Arguineguín Ravine Basin | 5211 | Agaete Ravine Basin | 474.3 | Agaete-Gáldar Interbasin | 204.6 | Telde Ravine Basin | 0 |
La Aldea-Agaete Interbasin | 602 | Guiniguada Ravine Basin | 428.6 | Moya Ravine Basin | 197.5 | Guiniguada-Telde Interbasin | 0 |
La Aldea Ravine Basin | 561 | Mogán Ravine Basin | 392.7 | Guayadeque Ravine Basin | 119 | Tenoya-Azuaje Interbasin | 0 |
Azuaje-Tenoya Interbasin | 538.7 | Maspalomas Ravine Basin | 337.1 | Gáldar-Moya Interbasin | 50 | Tirajana-Maspalomas Interbasin | 0 |
Tenoya Ravine Basin | 527.2 | Tirajana Ravine Basin | 293 | Maspalomas-Arguineguín Interbasin | 40.3 | ||
Tenoya-Guiniguada Interbasin | 527.2 | Gáldar Ravine Basin | 249 | Moya-Azuaje Interbasin | 14.5 |
Name | Stored Power (MWh) | Name | Stored Power (MWh) | Name | Stored Power (MWh) | Name | Stored Power (MWh) |
---|---|---|---|---|---|---|---|
Arguineguín Ravine Basin | 4818.3 | Guayadeque Ravine Basin | 119 | Telde Ravine Basin | 0 | Moya-Azuaje Interbasin | 0 |
La Aldea Ravine Basin | 561 | Guiniguada Ravine Basin | 119 | Tenoya Ravine Basin | 0 | Tenoya-Azuaje Interbasin | 0 |
La Aldea-Agaete Interbasin | 561 | Gáldar Ravine Basin | 0 | Azuaje-Tenoya Interbasin | 0 | Tenoya-Guiniguada Interbasin | 0 |
Tirajana Ravine Basin | 293 | Maspalomas Ravine Basin | 0 | Gáldar-Moya Interbasin | 0 | Tirajana-Maspalomas Interbasin | 0 |
Agaete Ravine Basin | 205 | Mogán Ravine Basin | 0 | Guiniguada-Telde Interbasin | 0 | ||
Agaete-Gáldar Interbasin | 206 | Moya Ravine Basin | 0 | Maspalomas-Arguineguín Interbasin | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Herrera, H.J.; Lozano-Medina, A. Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island. Energies 2021, 14, 3553. https://doi.org/10.3390/en14123553
Torres-Herrera HJ, Lozano-Medina A. Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island. Energies. 2021; 14(12):3553. https://doi.org/10.3390/en14123553
Chicago/Turabian StyleTorres-Herrera, Hilario J., and Alexis Lozano-Medina. 2021. "Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island" Energies 14, no. 12: 3553. https://doi.org/10.3390/en14123553
APA StyleTorres-Herrera, H. J., & Lozano-Medina, A. (2021). Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island. Energies, 14(12), 3553. https://doi.org/10.3390/en14123553