Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA)
Abstract
:1. Introduction
- -
- Through dehydrogenation, with this reaction usually taking place in unsaturated organic compounds:HO• + RH → R•+ H2O
- -
- Through electrophilic addition:HO• + X2C = CX2 → X2C(OH) − C•X2
- -
- Through electron transfer:HO• + RX → XR• + HO−
2. Materials and Methods
2.1. Materials
2.2. Technological Examinations
- Determination of the impact of disintegration on the value of indices of susceptibility of the sludge to biodegradation;
- Determination of the effect of disintegration with peracetic acid on the structure of pretreated excess sludge;
- Determination of the effect of the disintegration carried out by a chemical method with the most favorable pretreatment conditions on the efficiency of anaerobic stabilization, i.e., biogas production intensity, methane content, and the degree of mineralization of excess sludge.
- -
- Sludge A: raw excess sludge + inoculum;
- -
- Sludge B—excess sludge chemically disintegrated using an acidic reagent at a dose of 3 mL of STERIDIAL W-10/L for 1 h + inoculum.
- pH using pH meter (Cole Palmer 59002-00), according to PN-9/C-04540/05 [38];
- Alkalinity and total acidity, according to PN-91/C-04540/05 [38];
- Soluble chemical oxygen demand (SCOD) by bichromate method using tests for HACH 2I00N IS spectrophotometer, according to ISO 7027 [39];
- Volatile fatty acids (VFA) by means of distillation with water vapor, according to PN-75/C-04616/04 [40].
- Dry matter, dry organic matter, dry mineral matter according to PN-EN-12879 [41];
- pH using pH meter (Cole Palmer 59002-00), according to PN-91/C-04540/05 [38];
- Soluble chemical oxygen demand (SCOD) by bichromate method using tests for HACH 2I00N IS spectrophotometer, according to ISO 7027 [39];
- Volatile fatty acids (VFA) by means of distillation with water vapor, according to PN-75/C-04616/04 [40];
- Total alkalinity, according to PN-91/C-04540/05 [38];
- Ammonium nitrogen, according to PN-73/C-04576/02 [42];
- Total Kjeldahl nitrogen, according to PN-73/C-04576/10 [43].
3. Results and Discussion
3.1. The Effect of the Disintegration Conducted Using Independent Methods on Indices of Biodegradability of Sewage Sludge
3.1.1. Increase in the Concentration of Dissolved Organic Matter Observed in the Supernatant Liquor of Chemically Disintegrated Sewage Sludge
3.1.2. Structure of Chemically Disintegrated Excess Sludge
3.2. Effect of Disintegration on the Efficiency of Anaerobic Stabilization, i.e., Volatile Fatty Acids Generation, Biogas Production Intensity, Methane Content, and Sludge Digestion Degree
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gonzalez, A.; Hendriks, A.; van Lier, J.B.; de Kreuk, M. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleris, S.; Rouston, J.M. Effect of ozonation on activated sludge solubilization and mineralization. Ozone Sci. Eng. 2000, 22, 473–486. [Google Scholar] [CrossRef]
- Lendormi, T.; Prevot, C. Wet oxidation of domestic sludge and process integration: The minerals process. Water Sci. Technol. 2001, 44, 163–169. [Google Scholar] [CrossRef]
- Müller, J.A. Prospects and problems of sludge pretreatment processes. Water Sci. Technol. 2001, 44, 121–128. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsá, S.; Vázquez, F.; Font, X. Increasing biogas production by thermal (70 °C) sludge pretreatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Wolski, P.; Zawieja, I. Analysis of rheological parameters of pre-conditioned fermented sewage sludge. Annu. Set Environ. Prot. 2013, 15, 1645–1657. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrčve, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Ghyoot, W.; Verstraete, W. Anaerobic digestion of primary sludge from chemical pre-precipitation. Water Sci. Technol. 1997, 36, 357–365. [Google Scholar] [CrossRef]
- Wolski, P.; Zawieja, I. Effect of ultrasound field on dewatering of sewage sludge. Arch. Environ. Prot. 2012, 38, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Wolny, L.; Wolski, P.; Zawieja, I. Rheological parameters of dewatered sewage sludge after conditioning. Desalination 2008, 222, 382–387. [Google Scholar] [CrossRef]
- Bourgrier, C.; Carrére, H.; Delgenés, J.P. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 2005, 106, 163–169. [Google Scholar] [CrossRef]
- Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18, 1–18. [Google Scholar] [CrossRef]
- Zawieja, I.; Wolny, L.; Wolski, P. The impact of the ultrasonic hydrolysis process on the generation of volatile fatty acids in the process of acidic fermentation of excess sludge. Environ. Eng. Prot. 2009, 12, 207–217. [Google Scholar]
- Yunqin, L.; Dehan, W.; Shaoquan, W.; Chunmin, W. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J. Hazard. Mater. 2009, 170, 366–373. [Google Scholar]
- Myszograj, S. Methane fermentation of thermochemically hydrolysed sewage sludge. Environ. Eng. Prot. 2007, 10, 141–152. [Google Scholar]
- Sadecka, Z. Fundamentals of Biological Wastewater Treatment; Seidel—Przywecki: Józefosław, Poland, 2010. [Google Scholar]
- Wei, Y.; Van Houten, R.T.; Borger, A.R.; Eikelboom, D.H.; Fan, Y. Minimization of excess sludge production for biological wastewater treatment. Water Res. 2003, 37, 4453–4467. [Google Scholar] [CrossRef]
- Kamiya, T.; Hirotsuji, J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment. Water Sci. Technol. 1998, 38, 145–153. [Google Scholar] [CrossRef]
- Disintegration of Sewage Sludge. Available online: www.krevox.com.pl (accessed on 7 March 2012).
- Podedworna, J.; Umiejewska, K. Technology of Sewage Sludge; Publishing House of the Warsaw University of Technology: Warsaw, Poland, 2008. [Google Scholar]
- Xu, G.; Chen, S.; Shi, J.; Wang, S.; Zhu, G. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge. J. Hazard. Mater. 2010, 180, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Yeom, I.T.; Lee, K.R.; Lee, Y.H.; Ahn, K.H.; Lee, S.H. Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Sci. Technol. 2002, 46, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Eskicioglu, C.; Prorot, A.; Marin, J.; Droste, R.L.; Kennedy, K.J. Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res. 2008, 42, 4674–4682. [Google Scholar] [CrossRef]
- Dell’Erba, A.; Falsanisi, D.; Liberti, L.; Notarnicola, M.; Santoro, D. Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination 2007, 215, 177–186. [Google Scholar] [CrossRef]
- Domínguez Henao, L.; Cascio, M.; Turolla, A.; Antonelli, M. Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. Sci. Total Environ. 2018, 643, 936–945. [Google Scholar] [CrossRef]
- Domínguez Henao, L.; Turolla, A.; Antonelli, M. Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere 2018, 213, 25–40. [Google Scholar] [CrossRef]
- Luukkonen, T.; Prokkola, H.; Pehkonen, S.O. Peracetic acid for conditioning of municipal wastewater sludge: Hygienization, odor control, and fertilizing properties. Waste Manag. 2020, 102, 371–379. [Google Scholar] [CrossRef]
- Fleck, A. The Investigation of Peracetic Acid-Oxidized Loblolly Pine by Pyrolysis–Gas Chromatography–Mass Spectrometry. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1975. [Google Scholar]
- Yoon, J.; Lee, Y.; Kim, S. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci. Technol. 2001, 44, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.M.; Oliveros, E. How to evaluate photochemical methods for water treatment. Water Sci. Technol. 1997, 35, 17–23. [Google Scholar] [CrossRef]
- Wołczyński, M.; Wiśniowska, E.; Janosz-Rajczyk, M. The influence of conditioning of sewage sludge with peracetic acid on changes in their physical and chemical properties. Environ. Eng. Prot. 2009, 12, 51–63. [Google Scholar]
- Shang, M.; Hou, H. Studies on effect of peracetic acid pretreatment on anaerobic fermentation biogas production from sludge. In Proceedings of the Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009. [Google Scholar]
- Appels, L.; Van Assche, A.; Willems, K.; Degreve, J.; Van Impre, J.; Dewil, R. Peractetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresour. Technol. 2011, 102, 4124–4130. [Google Scholar] [CrossRef]
- Michalska, K.; Perkowski, J.; Ledakowicz, S.; Kos, L. Decomposition of a concentrated mixture of detergents under the action of Fenton’s reagent. Chem. Ind. 2006, 85, 1342–1345. [Google Scholar]
- Neis, U. Ultrasound in water, wastewater and sludge treatment. Sewage Treat. 2000, 21, 36–39. [Google Scholar]
- Booth, R.A.; Lester, J.N. The potential formation of halogenated by-products during peracetic acid treatment of final sewage effluent. Water Res. 1995, 29, 1793–1801. [Google Scholar] [CrossRef]
- Liberti, L.; Notarnicola, M. Advanced treatment and disinfection for municipal wastewater reuse in agriculture. Water Sci. Technol. 1999, 40, 235–245. [Google Scholar] [CrossRef]
- Standard PN-91 C-04540/05 Water and Sewage. Tests of pH, Acidity and Mineral and General Alkalinity in Municipal Sewage Sludge; Standardization Publishing House: Warsaw, Poland, 1991. [Google Scholar]
- International Measurements Standards ISO 7027. Water Quality; International Organization for Standards: Geneva, Switzerland, 2016. [Google Scholar]
- Standard PN-75/C-04616/04 Water and Sewage. Special studies of sediments. In Determination of Volatile Fatty Acids in Sewage Sludge and Over-Sludge Waters by Steam Distillation; Standardization Publishing House: Warsaw, Poland, 1991. [Google Scholar]
- Standard PN-EN 12879 Water and Sewage. Special tests of sludge. In Determination of the Content of Water, Dry Matter, Organic Substances and Minerals in Sewage Sludge; Standardization Publishing House: Warsaw, Poland, 1991. [Google Scholar]
- Standard PN-73/C-04576/02 Water and Sewage. Tests for the content of nitrogen compounds. In Determination Of Ammoniacal Nitrogen by Titration Method; Standardization Publishing House: Warsaw, Poland, 1991. [Google Scholar]
- Standard PN-75/C-04576/17 Water and Sewage. Tests for the content of nitrogen compounds. In Determination of Total Kjeldahl Nitrogen in Sewage Sludge; Standardization Publishing House: Warsaw, Poland, 1991. [Google Scholar]
- Zielewicz, E. Ultrasonic Disintegration of Excess Sludge in Obtaining Volatile Fatty Acids; Publishing House of the Silesian University of Technology: Gliwice, Poland, 2007. [Google Scholar]
- Baier, U.; Schmidheiny, P. Enhanced anaerobic degradation of mechanically disintegrated sludge. Water Sci. Technol. 1997, 36, 137–143. [Google Scholar] [CrossRef]
- Polish Standards PN-75/C-04616/07, Water and Sewage. Special Tests of Sludge, Determination of the Fermentation Capacity of Sewage Sludge and the Degree of Its Fermentation under Static Conditions and in a Continuous Process; Standardization Publishing House: Warsaw, Poland, 2019. [Google Scholar]
- Fukas-Płonka, Ł.; Zielewicz-Madej, E. Stabilization of excess sludge in the methane fermentation process. Environ. Eng. Prot. 2000, 3, 37–48. [Google Scholar]
- Stanisz, A. An Accessible Course in Statistics with the Use of STATISTICA PL on Examples from Medicine; StatSoft Polska Publishing House: Cracow, Poland, 2006. [Google Scholar]
- Procházka, J.; Dolejš, P.; MácA, J.; Dohányos, M. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 2012, 93, 439–447. [Google Scholar] [CrossRef]
- Cavallini, G.S.; De Campos, S.X.; De Souza, J.B.; De Sousa Vidal, C.M. Evaluation of the physical-chemical characteristics of wastewater after disinfection with peracetic acid. Water Air Soil Pollut. 2013, 224, 1752. [Google Scholar] [CrossRef]
- Magrel, L. Methodology for Assessing the Effectiveness of the Methane Fermentation Process of Selected Sewage Sludge; Publishing House of the Bialystok University of Technology: Bialystok, Poland, 2002. [Google Scholar]
- Heidrich, Z. Water Supply and Sewage Systems; School and Pedagogical Publishers: Warsaw, Poland, 1999. [Google Scholar]
- Chu, C.P.; Lee, D.J.; You, C.S.; Tay, J.H. Weak ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res. 2002, 36, 2681–2688. [Google Scholar] [CrossRef]
- Sun, D.; Qiao, M.; Xu, Y.; Ma, C.; Zhang, X. Pretreatment of waste activated sludge by peracetic acid oxidation for enhanced anaerobic digestion. Environ. Prog. Sustain. Energy 2018, 37, 2058–2062. [Google Scholar] [CrossRef]
- Zhou, A.; Zhang, J.; Varrone, C.; Wen, K.; Wang, G.; Liu, W.; Wang, A.; Yue, X. Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments. Energy 2017, 137, 457–467. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, B.; Wang, D.; Ma, T.; Xia, H.; Yu, D. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res. 2016, 88, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Kwarciak-Kozłowska, A.; Włodarczyk, R. Efficiency assessment of coke industry wastewater treatment during advanced oxidation process with biochar adsorption. Desalin. Water Treat. 2020, 199, 441–450. [Google Scholar] [CrossRef]
- Kwarciak-Kozłowska, A.; Fijałkowski, K. Efficiency assessment of municipal landfill leachate treatment during advanced oxidation process (AOP) with biochar adsorption (BC). J. Environ. Manag. 2021, 287, 112309. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Parameter/Unit | Type of Sludge Used in the Experiment | |
---|---|---|
Excess Sludge | Digested Sludge (Inoculum) | |
Total Solids (TS) | 12.35 g/L ± 0.23 | 17.54 mg/L ± 0.11 |
Volatile Susprended Solids (VSS) | 9.12 g/L ± 0.16 | 12.76 g/L ± 0.21 |
Soluble chemical oxygen demand (SCOD) | 168 mg O2/L ± 6 | 1124 mg O2/L ± 14 |
Volatile fatty acids (VFAs) | 75 mg CH3COOH/L ± 1.5 | 692 mg CH3COOH/L ± 3 |
Alkalinity | 860 mg CaCO3/L ± 5 | 2760 CaCO3/L ± 10 |
Kjeldahl nitrogen | 115 mg N/L ± 3.1 | 732 mg N/L ± 2.3 |
Ammonium nitrogen | 59 mg N-NH4/L ± 1.7 | 582 mg N-NH4+/L ± 1.2 |
pH | 7.03 ± 0.05 | 7.31 ± 0.11 |
SUBSTRATES | STAGE I | STAGE II | |
---|---|---|---|
Excess Sludge Digested Sludge (Inoculum) (Ratio 10:1) | Excess Sludge Pretreatment (0.5 ÷ 8 mL STERIDIAL W-10/L Sludge; Pretreatment Time: 1, 4 h, and 8 h | Methane Fermentation of Sludge A (Time of Process: 26 d) Excess Sludge + Inoculum (10:1) | Methane Fermentation of Sludge B (Time of Process: 26 d) Excess Sludge Chemically Disintegrated Using an Acidic Reagent at a Dose of 3 mL of STERIDIAL W-10/L Sludge for 1 h + Inoculum (10:1) |
Selected physicochemical parameters: | |||
TS, VSS, SCOD, VFAs, Alkalinity, Kjeldahl nitrogen, Ammonium nitrogen, and pH | pH, Alkalinity, Acidinity, SCOD, VFAs, and Fliq. | TS, VSS, SCOD, VFAs, Alkalinity, Kjeldahl nitrogen, Ammonium nitrogen, pH, VFAs/Alkalinity, biogas production intensity, methane content in biogas, and sludge digestion degree |
Index/Unit | Sludge A | Sludge B | ||
---|---|---|---|---|
Day 0 of Process | Day 26 of Process | Day 0 of Process | Day 26 of Process | |
TS, g/L | 12.54 ± 0.11 | 9.26 ± 0.17 | 12.76 ± 0.36 | 7.18 ± 0.17 |
VSS, g/L | 9.21 ± 0.32 | 4.34 ± 0.25 | 9.22 ± 0.53 | 2.37 ± 0.21 |
Alkalinity, mg CaCO3/L | 880 ± 15 | 2420 ± 40 | 920 ± 20 | 2640 ± 10 |
SCOD, mg O2/L | 185 ± 8 | 842 ± 3 | 1792 ± 7 | 1034 ± 11 |
VFAs, mg CH3COOH/L | 83 ± 2.1 | 617 ± 5.5 | 912 ± 3 | 834 ± 4 |
Kjeldahl nitrogen, mg N/dm3 | 134 ± 4.3 | 585 ± 4.8 | 415 ± 2.1 | 617 ± 6.5 |
Ammonium nitrogen, mg N-NH4/dm3 | 69 ± 0.5 | 507 ± 1.6 | 134 ± 4.6 | 583 ± 1.8 |
pH | 7.1 ± 0.04 | 7.31 ± 0.05 | 7.06 ± 0.03 | 7.24 ± 0.06 |
VFAs/Alkalinity | - | 0.25 | - | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawieja, I.; Worwąg, M. Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA). Energies 2021, 14, 3434. https://doi.org/10.3390/en14123434
Zawieja I, Worwąg M. Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA). Energies. 2021; 14(12):3434. https://doi.org/10.3390/en14123434
Chicago/Turabian StyleZawieja, Iwona, and Małgorzata Worwąg. 2021. "Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA)" Energies 14, no. 12: 3434. https://doi.org/10.3390/en14123434
APA StyleZawieja, I., & Worwąg, M. (2021). Biogas Production from Excess Sludge Oxidized with Peracetic Acid (PAA). Energies, 14(12), 3434. https://doi.org/10.3390/en14123434