Revised Environmental Kuznets Curve for V4 Countries and Baltic States
Abstract
1. Introduction
1.1. Problem Background
1.2. Related Studies
1.3. Analytical Tools
1.4. Environmental Kuznets Curve (EKC)
2. Materials and Methods
2.1. Data
- GHG emissions, in thousand tonnes CO2 equivalent, provided by Eurosta;
- Real GDP per capita in PPP (constant 2017 dollar) from the World Bank;
- Gross inland energy consumption per capita, in TOE per capita, based on Eurostat data;
- Share of renewable energy consumption in overall energy consumption at national level, from the World Bank;
- Share of foreign direct investment (FDI as net inflows) in GDP, provided by the World Bank;
- Output per worker as a proxy of labour productivity, from ILO;
- Domestic credit to private sector as a share of GDP, from the World Bank.
2.2. Methodology
- control variables
- parameters
- country-fixed effects
- innovations
- i—index indicating country
- t—index indicating year
3. Results
4. Discussion
Robustness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product decision-making information systems, real-time big data analytics, and deep learning-enabled smart process planning in sustainable industry 4.0. J. Self-Gov. Manag. Econ. 2020, 8, 16–22. [Google Scholar]
- Kliestik, T.; Misankova, M.; Valaskova, K.; Svabova, L. Bankruptcy prevention: New effort to reflect on legal and social changes. Sci. Eng. Ethics 2018, 24, 791–803. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T.; Valaskova, K.; Durana, P.; Juhaszova, Z. Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernic. 2019, 10, 743–772. [Google Scholar] [CrossRef]
- Lenhard, R.; Malcho, M.; Jandačka, J. Modelling of heat transfer in the evaporator and condenser of the working fluid in the heat pipe. Heat Transf. Eng. 2019, 40, 215–226. [Google Scholar] [CrossRef]
- Maroušek, J.; Stehel, V.; Vochozka, M.; Kolář, L.; Maroušková, A.; Strunecký, O.; Peterka, J.; Kopecký, M.; Shreedhar, S. Ferrous sludge from water clarification: Changes in waste management practices advisable. J. Clean. Prod. 2019, 218, 459–464. [Google Scholar] [CrossRef]
- Mardoyan, A.; Braun, P. Analysis of Czech subsidies for solid biofuels. Int. J. Green Energy 2015, 12, 405–408. [Google Scholar] [CrossRef]
- Jandačka, J.; Mičieta, J.; Holubčík, M.; Nosek, R. Experimental Determination of Bed Temperatures during Wood Pellet Combustion. Energy Fuels 2017, 31, 2919–2926. [Google Scholar] [CrossRef]
- Svazas, M.; Navickas, V.; Krajnakova, E.; Nakonieczny, J. Sustainable supply chain of the biomass cluster as a factor for preservation and enhancement of forests. J. Int. Stud. 2019, 12, 309–321. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Kolář, L.; Vochozka, M.; Kopecký, M.; Maroušková, A.; Batt, J.; Poliak, M.; Šoch, M.; Bartoš, P.; et al. Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Kliestik, T.; Valaskova, K.; Nica, E.; Kovacova, M.; Lazaroiu, G. Advanced methods of earnings management: Monotonic trends and change-points under spotlight in the Visegrad countries. Oeconomia Copernic. 2020, 11, 371–400. [Google Scholar] [CrossRef]
- Valaskova, K.; Throne, O.; Kral, P.; Michalkova, L. Deep learning-enabled smart process planning in cyber-physical system-based manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 121–127. [Google Scholar]
- Muo, I.; Azeez, A.A. Green entrepreneurship: Literature review and agenda for future research. Int. J. Entrep. Knowl. 2019, 7, 17–29. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Siakas, K.; Anastasiadis, T. Internet of things in the context of industry 4.0: An overview. Int. J. Entrep. Knowl. 2019, 7, 4–19. [Google Scholar] [CrossRef]
- Cepel, M. Social and Cultural Factors and their Impact on the Quality of Business Environment in the SME Segment. Int. J. Entrep. Knowl. 2019, 7, 65–73. [Google Scholar] [CrossRef]
- Vatankhah, S.; Zarra-Nezhad, M.; Amirnejad, G. An empirical assessment of willingness to accept “low-cost” air transport services: Evidence from the Middle East. J. Tour. Serv. 2019, 10, 79–103. [Google Scholar] [CrossRef]
- Maroušek, J.; Maroušková, A.; Kůs, T. Shower cooler reduces pollutants release in production of competitive cement substitute at low cost. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Vu, H.M.; Ngo, V.M. Strategy development from triangulated viewpoints for a fast growing destination toward sustainable tourism development—A case of Phu Quoc Islands in Vietnam. J. Tour. Serv. 2019, 10, 117–140. [Google Scholar] [CrossRef]
- Biagi, G.; Bertaccini, B. Public Information and Perception of the Environmental Risk about the Works for the City High Speed Railroad Underpass in Florence, Italy. J. Tour. Serv. 2018, 9. [Google Scholar] [CrossRef]
- Haskova, S. Holistic assessment and ethical disputation on a new trend in solid biofuels. Sci. Eng. Ethics 2017, 23, 509–519. [Google Scholar] [CrossRef]
- Streimikiene, D. Ranking of Baltic States on progress towards the main energy security goals of European energy union strategy. J. Int. Stud. 2020, 13, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Štreimikienė, D. Externalities of power generation in Visegrad countries and their integration through support of renewables. Econ. Sociol. 2021, 14, 89–102. [Google Scholar] [CrossRef]
- Bencsik, A.; Kosár, S.T.; Machová, R. Corporate Culture in Service Companies that Support Knowledge Sharing. J. Tour. Serv. 2018, 9, 7–13. [Google Scholar] [CrossRef]
- Vo, H.D. Sustainable agriculture & energy in the U.S.: A link between ethanol production and the acreage for corn. Econ. Sociol. 2020, 13, 259–268. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 99–307. [Google Scholar] [CrossRef]
- Vochozka, M.; Maroušková, A.; Váchal, J.; Straková, J. Reengineering the paper mill waste management. Clean Technol. Environ. Policy 2016, 18, 323–329. [Google Scholar] [CrossRef]
- Vochozka, M.; Rowland, Z.; Suler, P.; Marousek, J. The influence of the international price of oil on the value of the EUR/USD exchange rate. J. Compet. 2020, 12, 167. [Google Scholar] [CrossRef]
- Calvo, J. High-Tech Start-Ups in Japan: Cogent Labs, AI-OCR Solutions for Automated Business Process Outsourcing. Int. J. Entrep. Knowl. 2018, 6, 12–31. [Google Scholar] [CrossRef][Green Version]
- Blažková, I. Sectoral and firm-level determinants of profitability: A multilevel approach. Int. J. Entrep. Knowl. 2018, 6, 32–44. [Google Scholar] [CrossRef]
- Nefzi, N. Fear of failure and entrepreneurial risk perception. Int. J. Entrep. Knowl. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- Hnatyshyn, M. Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. J. Int. Stud. 2018, 11, 201–209. [Google Scholar] [CrossRef]
- Khursheed, A.; Mustafa, F.; Fatima, M.; Siddique, F. Entrepreneurial intentions: Gem based emipirical analysis on the Northern Europe and Asian countries. Int. J. Entrep. Knowl. 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Hadzima, B.; Janeček, M.; Estrin, Y.; Kim, H.S. Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng. A 2007, 462, 243–247. [Google Scholar] [CrossRef]
- Vochozka, M.; Horák, J.; Šuleř, P. Equalizing seasonal time series using artificial neural networks in predicting the Euro–Yuan exchange rate. J. Risk Financ. Manag. 2019, 12, 76. [Google Scholar] [CrossRef]
- Stehel, V.; Rowland, Z.; Mareček, J. Valuation of Intangible Assets Deposit Into Capital Company in Case of Specific Transaction. AD Alta J. Interdiscip. Res. 2019, 9, 287–291. [Google Scholar]
- Milward, R.; Popescu, G.H.; Michalikova, K.F.; Musova, Z.; Machova, V. Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Econ. Manag. Financ. Mark. 2019, 14, 37–43. [Google Scholar]
- Rowland, Z.; Machová, V.; Horák, J.; Hejda, J. Determining the Market Value of the Enterprise Using the Modified Method of Capitalized Net Incomes and Metfessel Allocation of Input Data. AD Alta J. Interdiscip. Res. 2019, 9, 305–310. [Google Scholar]
- Machová, V.; Jaromír, V. Value generators for businesses in agriculture. In Proceedings of the 12th International Days of Statistics and Economics Conference Proceedings, Prague, the 11th of October 2018; Löster, T., Pavelka, T., Eds.; Libuše Macáková, Melandrium: Praha, Česká Republika, 2018; pp. 1123–1132, ISBN 978-80-87990-14-8. [Google Scholar]
- Stehel, V.; Horák, J.; Vochozka, M. Prediction of institutional sector development and analysis of enterprises active in agriculture. E M Ekon. Manag. 2019, 22. [Google Scholar] [CrossRef]
- Alkhateeb, T.T.Y.; Mahmood, H.; Altamimi, N.N.; Furqan, M. Role of education and economic growth on the CO2 emissions in Saudi Arabia. Entrep. Sustain. Issues 2020, 8, 195–209. [Google Scholar] [CrossRef]
- Zamil, A.M.A.; Furqan, M.; Mahmood, H. Trade openness and CO2 emissions nexus in Oman. Enterp. Sustain. Issues 2019, 7, 1319–1329. [Google Scholar] [CrossRef]
- Igaliyeva, L.; Niyazbekova Sh, S.; Serikova, M.; Kenzhegaliyeva, Z.; Mussirov, G.; Zueva, A.; Tyurina, Y.U.; Maisigova, L. Towards environmental security via energy efficiency: A case study. Entrep. Sustain. Issues 2020, 7, 3488–3499. [Google Scholar] [CrossRef]
- Sneideriene, A.; Viederyte, R. Green growth assessment discourse on evaluation indices in the European Union. Entrep. Sustain. Issues 2020, 8, 360–369. [Google Scholar] [CrossRef]
- Chehabeddine, M.; Tvaronavičienė, M. Securing regional development. Insights Reg. Dev. 2020, 2, 430–442. [Google Scholar] [CrossRef]
- Sarma, U.; Karnitis, G.; Zuters, J.; Karnitis, E. District heating networks: Enhancement of the efficiency. Insights Reg. Dev. 2019, 1, 200–213. [Google Scholar] [CrossRef]
- El Iysaouy, L.; El Idrissi, N.E.; Tvaronavičienė, M.; Lahbabi, M.; Oumnad, A. Towards energy efficiency: Case of Morocco. Insights Reg. Dev. 2019, 1, 259–271. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef]
- Androniceanu, A. Social responsibility, an essential strategic option for a sustainable development in the field of bio-economy. Amfiteatru Econ. 2019, 21, 503–519. [Google Scholar] [CrossRef]
- Valodka, I.; Snieska, V.; Mihi-Ramirez, A. Impact of the International Trade on the EU Clothing Industry Carbon Emissions. Inz. Ekon. Eng. Econ. 2020, 31, 314–322. [Google Scholar] [CrossRef]
- Habibur, R.; Ghazali, A.; Bhatti, G.A.; Khan, S.U. Role of Economic Growth, Financial Development, Trade, Energy and FDI in Environmental Kuznets Curve for Lithuania: Evidence from ARDL Bounds Testing Approach. Inz. Ekon. Eng. Econ. 2020, 31, 39–49. [Google Scholar] [CrossRef]
- Ghauri, S.P.; Ahmed, R.R.; Streimikiene, D.; Streimikis, J. Forecasting Exports and Imports by using Autoregressive (AR) with Seasonal Dummies and Box-Jenkins Approaches: A Case of Pakistan. Inz. Ekon. Eng. Econ. 2020, 31, 291–301. [Google Scholar] [CrossRef]
- Tamulevičienė, D.; Androniceanu, A. Selection of the indicators to measure an enterprise’s value and its changes in the controlling system for medium-sized enterprises. Entrep. Sustain. Issues 2020, 7, 1440–1458. [Google Scholar] [CrossRef]
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Filimonova, I.; Komarova, A.; Mishenin, M. Impact of the global green factor on the capitalization of oil companies in Russia. Oeconomia Copernic. 2020, 11, 309–324. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Transformation of energy balances with dominant coal consumption in European economies and Turkey in the years 1990–2017. Oeconomia Copernic. 2019, 10, 627–647. [Google Scholar] [CrossRef]
- Karnitis, G.; Karnitis, E. Sustainable growth of EU economies and Baltic context: Characteristics and modelling. J. Int. Stud. 2017, 10, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Shindina, T.; Streimikis, J.; Sukhareva, Y.; Nawrot, Ł. Social and Economic Properties of the Energy Markets. Econ. Sociol. 2018, 11, 334–344. [Google Scholar] [CrossRef]
- Androniceanu, A.; Kinnunen, J.; Georgescu, I. E-Government Clusters in the EU Based on the Gaussian Mixture Models. Adm. Si Manag. Public 2020, 35, 6–20. Available online: https://ramp.ase.ro/_data/files/articole/2020/35-01.pdf (accessed on 3 February 2021). [CrossRef]
- Raggad, B. Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: Evidence from the ARDL approach and impulse saturation break tests. Environ. Sci. Pollut. Res 2018, 25, 14882–14898. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, Z.; Ur Rahman, Z.; Khan, S. Does financial development asymmetrically affect CO2 emissions in China? An application of the nonlinear autoregressive distributed lag (NARDL) model. Carbon Manag. 2018, 9, 631–644. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Odugbesan, J.A. Modeling CO2 emissions in South Africa: Empirical evidence from ARDL based bounds and wavelet coherence techniques. Environ. Sci. Pollut. Res. 2021, 28, 9377–9389. [Google Scholar] [CrossRef]
- Rjoub, H.; Odugbesan, J.A.; Adebayo, T.S.; Wong, W.K. Sustainability of the moderating role of financial development in the determinants of environmental degradation: Evidence from Turkey. Sustainability 2021, 13, 1844. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Rjoub, H. Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT countries. Sage Open 2020, 10, 2158244020914648. [Google Scholar] [CrossRef]
- Staniucha, R.; Wojciechowski, A. Mouth Features Extraction for Emotion Analysis. In Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. ACS 2016. Advances in Intelligent Systems and Computing; Kobayashi, S., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 534. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Weinan, E. Interpretable Neural Networks for Panel Data Analysis in Economics. arXiv 2020, arXiv:abs/2010.05311. [Google Scholar] [CrossRef]
- Półrola, M.; Wojciechowski, A. Real-Time Hand Pose Estimation Using Classifiers. In Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science; Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7594. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Semiparametric panel data models using neural networks. Applications 2017, arXiv:1702.06512. [Google Scholar]
- Malte, J. Artificial neural network regression models in a panel setting: Predicting economic growth. Econ. Model. 2020, 91, 148–154. [Google Scholar]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Ali, S.; Yusop, Z.; Kaliappan, S.R.; Chin, L. Trade-environment nexus in OIC countries: Fresh insights from environmental Kuznets curve using GHG emissions and ecological footprint. Environ. Sci. Pollut. Res. 2021, 28, 4531–4548. [Google Scholar] [CrossRef]
- Lazăr, D.; Minea, A.; Purcel, A.A. Pollution and economic growth: Evidence from Central and Eastern European countries. Energy Econ. 2019, 81, 1121–1131. [Google Scholar] [CrossRef]
- Solilová, V.; Nerudová, D. Evaluation of greenhouse gas emissions and related aspects: Case of the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 281–292. [Google Scholar] [CrossRef]
- Štreimikienė, D.; Balezentis, T. Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States. Renew. Sustain. Energy Rev. 2016, 58, 1108–1113. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.H.; Xu, Q. A solid oxide fuel cell (SOFC)-based biogas-from-waste generation system for residential buildings in China: A feasibility study. Sustainability 2018, 10, 2395. [Google Scholar] [CrossRef]
- Suki, N.M.; Sharif, A.; Afshan, S.; Suki, N.M. Revisiting the Environmental Kuznets Curve in Malaysia: The role of globalization in sustainable environment. J. Clean. Prod. 2020, 264, 121669. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod. 2019, 235, 1338–1352. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef]
- López-Menéndez, A.J.; Pérez, R.; Moreno, B. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. J. Environ. Manag. 2014, 145, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, M.; Montini, A.; Zoboli, R. Economic Dynamics, Emission Trends and the EKC Hypothesis: New Evidence Using NAMEA and Provincial Panel Data for Italy; No. 10261; Fondazione Eni Enrico Mattei (FEEM): Basilicata, Italy, 2007. [Google Scholar]
- Simionescu, M.; Bilan, Y.; Zawadzki, P.; Wojciechowski, A.; Rabe, M. GHG Emissions Mitigation in the European Union Based on Labor Market Changes. Energies 2021, 14, 465. [Google Scholar] [CrossRef]
- Fifeková, E.; Nemcová, E. Impact of FDI on economic growth: Evidence from V4 countries. Period. Polytech. Soc. Manag. Sci. 2015, 23, 7–14. [Google Scholar] [CrossRef]
- Gural, A.; Lomachynska, I. FDI and financial development as determinants of economic growth for V4 countries. Balt. J. Econ. Stud. 2017, 3, 59–64. [Google Scholar] [CrossRef]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable economic development and greenhouse gas emissions: The dynamic impact of renewable energy consumption, GDP, and corruption. Energies 2019, 12, 3289. [Google Scholar] [CrossRef]
- Simionescu, M.; Păuna, C.B.; Niculescum, M.D.V. The Relationship between Economic Growth and Pollution in Some New European Union Member States: A Dynamic Panel ARDL Approach. Energies 2021, 14, 2363. [Google Scholar] [CrossRef]
- The Eurostat Website. Available online: https://ec.europa.eu/eurostat/en/web/main/data/database (accessed on 2 February 2021).
- World Bank Website. Available online: https://data.worldbank.org (accessed on 3 February 2021).
- ILO Website. Available online: https://ilostat.ilo.org/topics/labour-productivity (accessed on 1 February 2021).
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
GHG emissions (GHG) | 90,884.52 | 119,272.8 | 59.71 | 422,764.3 |
Real GDP per capita (GDP) | 24,433.86 | 6912.45 | 9892.485 | 40,862.21 |
Share of energy consumption (EC) | 3.098166 | 0.812457 | 1.382274 | 4.54796 |
FDI | 5.185719 | 8.279625 | 4.4143 | 54.2391 |
Labour productivity (LP) | 44,904.59 | 17,941.57 | 13,883.2 | 80,539.48 |
Share of domestic credit to private sector (DC) | 47.24903 | 16.63993 | 12.86938 | 58.8176 |
Share of renewable energy consumption (REC) | 16.63846 | 10.47484 | 3.630589 | 40.36562 |
Variable | Statistic | p-Value |
---|---|---|
ln_GDP | 21.92 | <0.05 |
ln_GHG | 2.32 | <0.05 |
ln_EC | 6.30 | <0.05 |
ln_FDI | 5.60 | <0.05 |
ln_LP | 21.84 | <0.05 |
ln_DC | 2.19 | <0.05 |
ln_REC | 19.45 | <0.05 |
Variable | Statistic (Constant and Trend) (No Lag) Data in Level | Statistic (Constant and Trend) (One Lag) Data in Level | Statistic (Constant and Trend) (No Lag) Data in the First Difference | Statistic (Constant and Trend) (One Lag) Data in the First Difference |
---|---|---|---|---|
ln_GDP | −0.1403 | −2.3502 * | −4.5002 * | −5.7298 * |
ln_GHG | −0.1279 | −0.8382 | −3.6416 * | −2.8106 * |
ln_EC | −3.1173 * | −2.6906 * | ||
ln_FDI | −4.9810 * | −4.0176 * | ||
ln_LP | 6.4658 | 2.9180 | −4.6318 * | −4.0683 * |
ln_DC | −4.8820 * | −4.2022 * | ||
ln_REC | 4.0165 | 1.4987 | −6.6699 * | −2.8610 * |
Statistic | p-Value | |
---|---|---|
Pedroni test | ||
Modified Phillips | 0.2627 | 0.3964 |
Phillips | −1.8774 | 0.0302 |
Augmented Dickey | −1.4996 | 0.0669 |
Westerlund test | ||
Variance ratio | −1.6039 | 0.0544 |
Variable | EKC | RKC | |
---|---|---|---|
Long-run relationship | ln_GDP | −1021.59 * | −2.0183 * |
ln2_GDP | 101.1758 * | 0.1171 * | |
ln3_GDP | −3.338095 * | - | |
ln_REC | - | −0.3282 * | |
Error correction term | −1.2331 * | −0.8842 * | |
Short-run relationship | ln_GDP | −3074.806 | −26.433 |
ln2_GDP | 309.7856 | 1.2930 | |
ln3_GDP | −10.39557 | - | |
ln_REC | - | 0.3054 | |
Constant | 4251.86 | 18.207 * | |
Residuals | I(0) | I(0) |
Variable | Coefficients | |
---|---|---|
EKC | RKC | |
ln_GDPt | −114.573 ** | −114.0228 ** |
ln2_GDP ln3_GDP | 5.817 ** −2.223 ** | 5.836 ** |
ln_REC | - | −0.476 ** |
Constant | 54.334 | 58.498 * |
Variable | EKC | RKC | |
---|---|---|---|
Long-run relationship | ln_GDP | −1001.22 * | −2.341 * |
ln2_GDP | 100.9887 * | 0.1022 * | |
ln3_GDP | −3.4405 * | - | |
ln_REC | - | −0.7126 * | |
ln_EC | 2.0334 * | ||
ln_DC ln_LP ln_FDI | −0.223 * 3.0056 * 0.0956 | −0.592 * 4.175 * 0.1123 | |
Error correction term | −0.3044 * | −0.2577 ** | |
Short-run relationship | ln_GDP | −3109.99 | −2.0204 |
ln2_GDP | 305.885 | 0.1443 | |
ln3_GDP | −9.8905 | - | |
ln_REC | - | −0.3653 | |
ln_EC | 3.0089 | - | |
ln_DC −0.289 ln_LP ln_FDI 0.135 | 0.338 | −0.326 0.810 0.103 | |
Constant | 15.946 | 8.9609 | |
Residuals | I(0) | I(0) |
Variable | Coefficients | |
---|---|---|
EKC | RKC | |
ln_GDPt | −2.751 ** | −50.5425 ** |
ln2_GDP ln3_GDP | 0.310 ** −2.678 ** | 2.568 ** - |
ln_REC ln_EC | - 0.988 ** | −0.934 ** |
ln_DC | −1.060 ** | −1.093 ** |
ln_LP | 0.205 ** | 3.651 |
ln_FDI | 0.0087 | 0.018 |
Constant | 70.225 | −389.218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies 2021, 14, 3302. https://doi.org/10.3390/en14113302
Simionescu M, Wojciechowski A, Tomczyk A, Rabe M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies. 2021; 14(11):3302. https://doi.org/10.3390/en14113302
Chicago/Turabian StyleSimionescu, Mihaela, Adam Wojciechowski, Arkadiusz Tomczyk, and Marcin Rabe. 2021. "Revised Environmental Kuznets Curve for V4 Countries and Baltic States" Energies 14, no. 11: 3302. https://doi.org/10.3390/en14113302
APA StyleSimionescu, M., Wojciechowski, A., Tomczyk, A., & Rabe, M. (2021). Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies, 14(11), 3302. https://doi.org/10.3390/en14113302