Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas
Abstract
:1. Introduction
2. Materials and Methods
- -
- average annual total expenditure of the commune in 2016–2019 (PLN),
- -
- average annual capital expenditure of the commune in 2016–2019 (PLN),
- -
- average annual share of property expenditure in the total expenditure of the commune in 2016–2019 (%),
- -
- average annual total income of the commune in 2016–2019 (PLN),
- -
- average annual income of the commune per capita in 2016–2019 (PLN),
- -
- value of the co-financing of renewable energy investment projects in municipalities in 2016–2019 (PLN),
- -
- share of co-financing in the value of investment projects related to renewable energy sources in municipalities 2016–2019 (%).
- N—sample size
- di—differences between the ranks of the corresponding features xi and feature yi (i = 1, 2, …, n).
3. Results
- Strategy for Responsible Development (with a perspective until 2030),
- Strategy for Energy Security and Environment—perspective until 2020,
- Poland’s energy policy until 2030,
- National action plan in the field of energy from renewable sources,
- Directions of development of agricultural biogas plants in Poland in 2010–2020.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boehlke, J.; Fałdzinski, M.; Gałecki, M.; Osińska, M. Searching for Factors of Accelerated Economic Growth: The Case of Ireland and Turkey. Eur. Res. Stud. J. 2020, 23, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Cicea, C.; Marinescu, C.; Popa, I.; Dobrin, C. Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level. Renew. Sustain. Energy Rev. 2014, 30, 555–564. [Google Scholar] [CrossRef]
- Woo, C.; Chung, Y.; Chun, D.; Seo, H.; Hong, S. The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renew. Sustain. Energy Rev. 2015, 47, 367–376. [Google Scholar] [CrossRef]
- Bilgen, S.; Sarıkaya, İ. Exergy for environment, ecology and sustainable development. Renew. Sustain. Energy Rev. 2015, 51, 1115–1131. [Google Scholar] [CrossRef]
- Ciocoiu, C.N. Integrating digital economy and green economy: Opportunities for sustainable development. Theor. Empir. Res. Urban Manag. 2011, 6, 33–43. [Google Scholar]
- Mandal, S.K.; Madheswaran, S. Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy 2010, 38, 1108–1118. [Google Scholar] [CrossRef]
- Reith, C.C.; Guidry, M.J. Eco-efficiency analysis of an agricultural research complex. J. Environ. Manag. 2003, 68, 219–229. [Google Scholar] [CrossRef]
- Park, S.E.; Howden, S.M.; Crimp, S.J.; Gaydon, D.S.; Attwood, S.J.; Kokic, P.N. More than Eco-efficiency is Required to Improve Food Security. Crop Sci. 2010, 50, S-132. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Beltrán-Esteve, M.; Gómez-Limón, J.A. Assessing eco-efficiency with directional distance functions. Eur. J. Oper. Res. 2012, 220, 798–809. [Google Scholar] [CrossRef]
- Wang, G.; Côté, R. Integrating eco-efficiency and eco-effectiveness into the design of sustainable industrial systems in China. Int. J. Sustain. Dev. World Ecol. 2011, 18, 65–77. [Google Scholar] [CrossRef]
- Henri, J.F.; Journeault, M. Eco-efficiency and organizational practices: An exploratory study of manufacturing firms. Environ. Plan. C: Gov. Policy 2009, 27, 894–921. [Google Scholar] [CrossRef]
- Trianni, A.; Cagno, E.; Neri, A. Modelling barriers to the adoption of industrial sustainability measures. J. Clean. Prod. 2017, 168, 1482–1504. [Google Scholar] [CrossRef]
- Holmberg, J.; Lundqvist, U.; Svanström, M.; Arehag, M. The university and transformation towards sustainability: The strategy used at Chalmers University of Technology. Int. J. Sustain. High. Educ. 2012, 13, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Liczmańska-Kopcewicz, K.; Pypłacz, P.; Wiśniewska, A. Resonance of investments in renewable energy sources in industrial enterprises in the food industry. Energies 2020, 13, 4285. [Google Scholar] [CrossRef]
- Konečný, V.; Gnap, J.; Settey, T.; Petro, F.; Skrúcaný, T.; Figlus, T. environmental sustainability of the vehicle fleet change in public city transport of selected city in central Europe. Energies 2020, 13, 3869. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Haddad, B.; Liazid, A.; Ferreira, P. A multi-criteria approach to rank renewables for the Algerian electricity system. Renew. Energy 2017, 107, 462–472. [Google Scholar] [CrossRef]
- Shmelev, S.E. Climate change and renewable energy: How to choose the optimal pool of technologies. In Ecological Economics; Springer: Dordrecht, The Netherlands, 2012; pp. 133–153. [Google Scholar]
- Mateo, J.R.S.C. The renewable energy industry and the need for a multi-criteria analysis. In Multi Criteria Analysis in the Renewable Energy Industry; Springer: London, UK, 2012; pp. 1–5. [Google Scholar]
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- De Jager, D.; Klessmann, C.; Stricker, E.; Winkel, T.; de Visser, E.; Koper, M.; Ragwitz, M.; Held, A.; Resch, G.; Busch, S.; et al. Financing renewable energy in the European energy market. In Report for the European Commission, Directorate-General for Energy; Ecofys Netherlands B.V.: Utrecht, The Netherlands, 2011. [Google Scholar]
- Mir-Artigues, P.; Del Río, P. Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy. Energy Policy 2014, 69, 430–442. [Google Scholar] [CrossRef] [Green Version]
- del Río, P.; Mir-Artigues, P. Combinations of support instruments for renewable electricity in Europe: A review. Renew. Sustain. Energy Rev. 2014, 40, 287–295. [Google Scholar] [CrossRef]
- del Rio, P. On evaluating success in complex policy mixes: The case of renewable energy support schemes. Policy Sci. 2014, 47, 267–287. [Google Scholar] [CrossRef]
- del Río, P.; Resch, G.; Ortner, A.; Liebmann, L.; Busch, S.; Panzer, C. A techno-economic analysis of EU renewable electricity policy pathways in 2030. Energy Policy 2017, 104, 484–493. [Google Scholar] [CrossRef]
- del Río, P.; Cerdá, E. The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support. Energy Policy 2014, 64, 364–372. [Google Scholar] [CrossRef]
- Steinhilber, S.; Geldermann, J.; Wietschel, M. Renewables in the EU after 2020: A multi-criteria decision analysis in the context of the policy formation process. Euro J. Decis. Process. 2016, 4, 119–155. [Google Scholar] [CrossRef]
- Klessmann, C.; Rathmann, M.; de Jager, D.; Gazzo, A.; Resch, G.; Busch, S.; Ragwitz, M. Policy options for reducing the costs of reaching the European renewables target. Renew. Energy 2013, 57, 390–403. [Google Scholar] [CrossRef]
- Lee, C.W.; Zhong, J. Financing and risk management of renewable energy projects with a hybrid bond. Renew. Energy 2015, 75, 779–787. [Google Scholar] [CrossRef]
- Ozcan, M. Assessment of renewable energy incentive system from investors’ perspective. Renew. Energy 2014, 71, 425–432. [Google Scholar] [CrossRef]
- Morton, P.J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure Sarr, A.; Vincent, K.E. Rural areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Womach, J. Agriculture: Terms, Programs, and Laws; Nova Science Publishers: New York, NY, USA, 2005; p. 234. [Google Scholar]
- Simon, D.; McGregor, D.; Thompson, D. Contemporary perspectives on the peri-urban zones of cities in developing countries. In The Peri-Urban Interface: Approaches to Sustainable Natural and Human Resource Use; McGregor, D., Simon, D., Thompson, D., Eds.; Earthscan: London, UK, 2006; pp. 3–17. [Google Scholar]
- OECD. Regional Outlook 2016: Productive Regions for Inclusive Societies; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- Wilkin, J. Cele i zasady koordynacji polityk wspierających zrównoważony rozwójobszarów wiejskich. Studia Kpzk 2014, 154, 25–54. [Google Scholar]
- Krzysztoik, M. Problematyka prawna pojęcia obszaru wiejskiego. Studia Iurid. Lub. 2017, 26, 299–314. [Google Scholar]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Liang, X. Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl. 2016, 53, 855–866. [Google Scholar] [CrossRef]
- Tareen, W.U.K.; Anjum, Z.; Yasin, N.; Siddiqui, L.; Farhat, I.; Malik, S.A.; Aamir, M. The prospective non-conventional alternate and renewable energy sources in Pakistan—A focus on biomass energy for power generation, transportation, and industrial fuel. Energies 2018, 11, 2431. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Monroy, C.; Mármol-Acitores, G.; Nilsson-Cifuentes, G. Electricity generation in Chile using non-conventional renewable energy sources—A focus on biomass. Renew. Sustain. Energy Rev. 2018, 81, 937–945. [Google Scholar] [CrossRef]
- Khan, K.A.; Hasan, M.; Islam, M.A.; Alim, M.A.; Asma, U.; Hassan, L.; Ali, M.H. A study on conventional energy sources for power production. Int. J. Adv. Res. Innov. Ideas Educ. 2018, 4, 214–228. [Google Scholar]
- Gradziuk, B.; Gradziuk, P. Heat pumps versus biomass boilers: A comparative analysis of heating costs for public buildings. Ann. Paaae 2020, 22, 77–85. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Economic efficiency of applying a heat pump system in heating based on the example of the Ruda-Huta commune experience. Ann. Paaae 2019, 21, 88–96. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Economic profitability of investment in a photovoltaic plant in south-east Poland. Ann. Paaae 2019, 21, 124–133. [Google Scholar] [CrossRef]
- Gradziuk, P.; Gradziuk, B. Renewable energy sources as a development opportunity for peripheral areas. Econ. Reg. Stud. 2020, 13, 184–198. [Google Scholar] [CrossRef]
- Gradziuk, B. Postawy mieszkańców wsi wobec odnawialnych źródeł energii. Rocz. Ser. 2014, 16, 103–108. [Google Scholar]
- Gradziuk, P.; Gradziuk, B. Próba oceny efektów absorpcji środków z funduszy europejskich na rozwój wykorzystania odnawialnych źródeł energii w województwie lubelskim. Rocz. Nauk. Ekon. Rol. I Rozw. Obsz. Wiej. 2017, 104, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Yaqoot, M.; Diwan, P.; Kandpal, T.C. Review of barriers to the dissemination of decentralized renewable energy systems. Renew. Sustain. Energy Rev. 2016, 58, 477–490. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1955; p. 19. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Energia Ze Źródeł Odnawialnych w 2019, r. Informacje Sygnalne; Central Statistical Office: Warsaw, Poland, 2020; pp. 1–7.
- Raport 2019 KSE. Zestawienie Danych Ilościowych Dotyczących Funkcjonowania KSE w 2019 Roku. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-rb/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2019#t1_1 (accessed on 19 November 2020).
- Polish Government: Wind Turbines Will Be Scrapped within 17 Years. Available online: https://wysokienapiecie.pl/15011-ministry-wind-turbines-will-scrapped-within-17-years/ (accessed on 19 December 2020).
- Nowy Projekt Polityki Energetycznej Państwa Wieszczy Przyspieszony Koniec Węgla. Available online: https://wysokienapiecie.pl/32078-nowy-projekt-polityki-energetycznej-panstwa-wieszczy-przyspieszony-koniec-wegla/ (accessed on 19 December 2020).
- Kontroli, N.I. Rozwój Sektora Odnawialnych Źródeł Energii. Informacja o Wynikach Kontroli; Komenda Glówna Policji: Warsaw, Poland, 2018. [Google Scholar]
- Informacja o Wynikach Kontroli. Przygotowanie Systemu Wdrażania Polityki Strukturalnej na Lata 2014–2020. In Najwyższa Izba Kontroli; 2014. Available online: https://www.nik.gov.pl/plik/id,7304,vp,9200.pdf (accessed on 19 December 2020).
- Świąder, M.; Tokarczyk-Dorociak, K.; Szewrański, S.; Kazak, J. Analiza zapisów regionalnych programów operacyjnych w latach 2014-2020 w kontekście finansowania inwestycji z zakresu OZE. Rynek Energii 2016, 3, 72–80. [Google Scholar]
- Piechota, K.; Szczepaniak, K.; Wojewnik-Filipkowska, A. Inwestycje w Nieruchomości w Warunkach Zrównoważonego Rozwoju; Wybrane Problemy, Wydział Zarządzania Uniwersytetu Gdańskiego: Sopot, Poland, 2014; pp. 51–65. [Google Scholar]
- Przybytniowski, J.W.; Pacholarz, W.M. Ekonomiczne i gospodarcze aspekty rozwoju sektora energetycznego w województwie świętokrzyskim. Zesz. Nauk. Małopolskiej Wyższej Szkoły Ekon. W Tarn. 2015, 2–3, 27–37. [Google Scholar]
- Micale, V.; Frisari, G.; Hervé-Mignucci, M.; Mazza, F. Risk Gaps: Policy Risk Instruments; CPI: San Francisco, CA, USA, 2013; pp. 1–5. [Google Scholar]
- Jin, X.; Zhang, Z.; Shi, X.; Ju, W. A review on wind power industry and corresponding insurance market in China: Current status and challenges. Renew. Sustain. Energy Rev. 2014, 38, 1069–1082. [Google Scholar] [CrossRef]
- Gatzert, N.; Kosub, T. Determinants of policy risks of renewable energy investments. Int. J. Energy Sect. Manag. 2017, 11, 28–45. [Google Scholar] [CrossRef]
- Gatzert, N.; Kosub, T. Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. Renew. Sustain. Energy Rev. 2016, 60, 982–998. [Google Scholar] [CrossRef]
- Gatzert, N.; Vogl, N. Evaluating investments in renewable energy under policy risks. Energy Policy 2016, 95, 238–252. [Google Scholar] [CrossRef]
- Wall, R.; Grafakos, S.; Gianoli, A.; Stavropoulos, S. Which policy instruments attract foreign direct investments in renewable energy? Clim. Policy 2019, 19, 59–72. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A.; Klepacki, B.; Szczepaniuk, H.; Szczepaniuk, E.K.; Bereziński, S.; Ziółkowska, P. The Importance of Higher Education in the EU Countries in Achieving the Objectives of the Circular Economy in the Energy Sector. Energies 2020, 13, 4407. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A. Changes in Energy Supplies in the Countries of the Visegrad Group. Sustainability 2020, 12, 7916. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A. Diversity and Changes in the Energy Balance in EU Countries. Energies 2021, 14, 1098. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A.; Ratajczak, M. Differentiation in Healthcare Financing in EU Countries. Sustainability 2021, 13, 251. [Google Scholar] [CrossRef]
- .Rokicki, T.; Perkowska, A.; Klepacki, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K. Changes in Energy Consumption in Agriculture in the EU Countries. Energies 2021, 14, 1570. [Google Scholar] [CrossRef]
- Adib, R.; Murdock, H.E.; Appavou, F.; Brown, A.; Epp, B.; Leidreiter, A.; Farrell, T.C. Renewables 2015 Global Status Report; REN21 Secretariat: Paris, France, 2015; p. 162. [Google Scholar]
- Murdock, H.E.; Adib, R.; Lins, C.; Guerra, F.; Misra, A.; Vickery, L.; Philibert, C. Renewable Energy Policies a Time Transit; IRENA: Masdar City, United Arab Emirates, 2018. [Google Scholar]
- Mignon, I.; Bergek, A. Investments in renewable electricity production: The importance of policy revisited. Renew. Energy 2016, 88, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Bergek, A.; Mignon, I.; Sundberg, G. Who invests in renewable electricity production? Empirical evidence and suggestions for further research. Energy Policy 2013, 56, 568–581. [Google Scholar] [CrossRef] [Green Version]
- Karneyeva, Y.; Wüstenhagen, R. Solar feed-in tariffs in a post-grid parity world: The role of risk, investor diversity and business models. Energy Policy 2017, 106, 445–456. [Google Scholar] [CrossRef]
- Wüstenhagen, R.; Menichetti, E. Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research. Energy Policy 2012, 40, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.S. Low-carbon investment risks and de-risking. Nat. Clim. Chang. 2014, 4, 237–239. [Google Scholar] [CrossRef]
- Waissbein, O.; Glemarec, Y.; Bayraktar, H.; Schmidt, T.S. Derisking renewable energy investment. In A Framework to Support Policymakers in Selecting Public Instruments to Promote Renewable Energy Investment in Developing Countries; United Nations Development Programme (UNDP): New York, NY, USA, 2013; pp. 1–151. [Google Scholar]
- Simionescu, M.; Strielkowski, W.; Tvaronavičienė, M. Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries. Energies 2020, 13, 2280. [Google Scholar] [CrossRef]
- Jenner, S.; Groba, F.; Indvik, J. Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries. Energy Policy 2013, 52, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, P.; Bleda, M. Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach. Energy Policy 2012, 50, 272–282. [Google Scholar] [CrossRef]
- Couture, T.; Gagnon, Y. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy 2010, 38, 955–965. [Google Scholar] [CrossRef]
- Liou, H.M. Comparing feed-in tariff incentives in Taiwan and Germany. Renew. Sustain. Energy Rev. 2015, 50, 1021–1034. [Google Scholar] [CrossRef]
- Angelopoulos, D.; Doukas, H.; Psarras, J.; Stamtsis, G. Risk-based analysis and policy implications for renewable energy investments in Greece. Energy Policy 2017, 105, 512–523. [Google Scholar] [CrossRef]
- Polzin, F.; Egli, F.; Steffen, B.; Schmidt, T.S. How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective. Appl. Energy 2019, 236, 1249–1268. [Google Scholar] [CrossRef]
- Salm, S. The investor-specific price of renewable energy project risk–A choice experiment with incumbent utilities and institutional investors. Renew. Sustain. Energy Rev. 2018, 82, 1364–1375. [Google Scholar] [CrossRef]
- Tietjen, O.; Pahle, M.; Fuss, S. Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets. Energy Econ. 2016, 58, 174–185. [Google Scholar] [CrossRef]
- Egli, F. Renewable energy investment risk: An investigation of changes over time and the underlying drivers. Energy Policy 2020, 140, 111428. [Google Scholar] [CrossRef]
- Mazzucato, M.; Semieniuk, G. Financing renewable energy: Who is financing what and why it matters. Technol. Forecast. Soc. Chang. 2018, 127, 8–22. [Google Scholar] [CrossRef]
- Egli, F.; Steffen, B.; Schmidt, T.S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 2018, 3, 1084–1092. [Google Scholar] [CrossRef]
- Egli, F. The Dynamics of Renewable Energy Investment Risk: A Comparative Assessment of Solar PV and Onshore Wind Investments in Germany, Italy, and the UK. In Proceedings of the Energy Challenges for the Next Decade, 16th IAEE European Conference, Cleveland, OH, USA, 25−28 August 2019; pp. 1–30. [Google Scholar]
- Green, R.; Yatchew, A. Support schemes for renewable energy: An economic analysis. Econ. Energy Environ. Policy 2012, 1, 83–98. [Google Scholar] [CrossRef]
- Haas, R.; Panzer, C.; Resch, G.; Ragwitz, M.; Reece, G.; Held, A. A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renew. Sustain. Energy Rev. 2011, 15, 1003–1034. [Google Scholar] [CrossRef]
- Klessmann, C.; Lamers, P.; Ragwitz, M.; Resch, G. Design options for cooperation mechanisms under the new European renewable energy directive. Energy Policy 2010, 38, 4679–4691. [Google Scholar] [CrossRef]
- Dong, C.G. Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development. Energy Policy 2012, 42, 476–485. [Google Scholar] [CrossRef]
- Johnston, A.; Neuhoff, K.; Fouquet, D.; Ragwitz, M. Proposed New EU Renewables Directive: Interpretation, Problems and Prospects. Eur. Energy Envtl. L. Rev. 2008, 17, 126. [Google Scholar]
- Smith, M.G.; Urpelainen, J. The effect of feed-in tariffs on renewable electricity generation: An instrumental variables approach. Environ. Resour. Econ. 2014, 57, 367–392. [Google Scholar] [CrossRef]
- Yin, H.; Powers, N. Do state renewable portfolio standards promote in-state renewable generation? Energy Policy 2010, 38, 1140–1149. [Google Scholar] [CrossRef]
- Wiser, R.; Mai, T.; Millstein, D.; Barbose, G.; Bird, L.; Heeter, J.; Keyser, D.; Krishnan, V.; Macknick, J. Assessing the costs and benefits of US renewable portfolio standards. Environ. Res. Lett. 2017, 12, 094023. [Google Scholar] [CrossRef]
- Ogunrinde, O.; Shittu, E.; Dhanda, K.K. Investing in renewable energy: Reconciling regional policy with renewable energy growth. IEEE Eng. Manag. Rev. 2018, 46, 103–111. [Google Scholar] [CrossRef]
- Yang, Y.C.; Nie, P.Y.; Liu, H.T.; Shen, M.H. On the welfare effects of subsidy game for renewable energy investment: Toward a dynamic equilibrium model. Renew. Energy 2018, 121, 420–428. [Google Scholar] [CrossRef]
- Smith, A. Emerging in between: The multi-level governance of renewable energy in the English regions. Energy Policy 2007, 35, 6266–6280. [Google Scholar] [CrossRef]
- Essletzbichler, J. Renewable energy technology and path creation: A multi-scalar approach to energy transition in the UK. Eur. Plan. Stud. 2012, 20, 791–816. [Google Scholar] [CrossRef]
- Grillitsch, M.; Hansen, T. Green industry development in different types of regions. Eur. Plan. Stud. 2019, 27, 2163–2183. [Google Scholar] [CrossRef] [Green Version]
- Brachert, M.; Hornych, C.; Franz, P. Regions as selection environments? The emergence of the solar industry in Germany from 1992 to 2008. Eur. Plan. Stud. 2013, 21, 1820–1837. [Google Scholar] [CrossRef]
- van den Berge, M.; Weterings, A.; Alkemade, F. Do existing regional specialisations stimulate or hinder diversification into cleantech? Environ. Innov. Soc. Transit. 2020, 35, 185–201. [Google Scholar] [CrossRef]
- Ancygier, A.; Szulecki, K. Does Local Energy Mean Renewable? Report from a Survey on the Acceptance for the Development of Renewable Energy Sources Among Polish Local Authorities. Espri Rep. No. 1 2014. Available online: https://ssrn.com/abstract=2457590 (accessed on 16 November 2020).
- Łączak, A.; Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M. Renewable energy sources in the Lubusz Voivodship (Poland). The present conditions and perspectives for development. Civ. Environ. Eng. Rep. 2018, 28, 31–67. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Cichosz, M.; Piechota, G.; Kujawski, W.; Plaskacz, M. Renewable energy production in the Zachodniopomorskie Voivodeship (Poland). Renew. Sustain. Energy Rev. 2013, 27, 768–777. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Iglińska, A.; Cichosz, M.; Plaskacz-Dziuba, M. SWOT analysis of the renewable energy sector in Poland. Case study of Wielkopolskie region. J. Power Technol. 2015, 95, 143–157. [Google Scholar]
- Igliński, B.; Iglińska, A.; Cichosz, M.; Kujawski, W.; Buczkowski, R. Renewable energy production in the Łódzkie Voivodeship. The PEST analysis of the RES in the voivodeship and in Poland. Renew. Sustain. Energy Rev. 2016, 58, 737–750. [Google Scholar] [CrossRef]
- Hernik, J.; Rutkowska, A.; Noszczyk, T. Correlation between selected socioeconomic variables and the number of renewable energy sources in Świętokrzyskie Voivodeship (Poland). In Proceedings of the 15th International Scientific Conference: Engineering for Rural Development, Jelgava, Latvia, 25−27 May 2016; pp. 25–27. [Google Scholar]
- Pieńkowski, C.A. The possibilities of using renewable sources of energy in Podlaskie Province. Pol. J. Environ. Stud. 2010, 19, 537–544. [Google Scholar]
- Igliński, B.; Piechota, G.; Iglińska, A.; Cichosz, M.; Buczkowski, R. The study on the SWOT analysis of renewable energy sector on the example of the Pomorskie Voivodeship (Poland). Clean Technol. Environ. Policy 2016, 18, 45–61. [Google Scholar] [CrossRef]
- Van Der Schoor, T.; Van Lente, H.; Scholtens, B.; Peine, A. Challenging obduracy: How local communities transform the energy system. Energy Res. Soc. Sci. 2016, 13, 94–105. [Google Scholar] [CrossRef]
- Kooij, H.J.; Oteman, M.; Veenman, S.; Sperling, K.; Magnusson, D.; Palm, J.; Hvelplund, F. Between grassroots and treetops: Community power and institutional dependence in the renewable energy sector in Denmark, Sweden and the Netherlands. Energy Res. Soc. Sci. 2018, 37, 52–64. [Google Scholar] [CrossRef]
- Sperling, K.; Hvelplund, F.; Mathiesen, B.V. Centralisation and decentralisation in strategic municipal energy planning in Denmark. Energy Policy 2011, 39, 1338–1351. [Google Scholar] [CrossRef]
- Thellufsen, J.Z.; Lund, H. Roles of local and national energy systems in the integration of renewable energy. Appl. Energy 2016, 183, 419–429. [Google Scholar] [CrossRef]
- Waenn, A.; Connolly, D.; Gallachóir, B.Ó. Investigating 100% renewable energy supply at regional level using scenario analysis. Int. J. Sustain. Energy Plan. Manag. 2014, 3, 21–32. [Google Scholar]
- Bórawski, P.; Bórawski, M.B.; Parzonko, A.; Wicki, L.; Rokicki, T.; Perkowska, A.; Dunn, J.W. Development of Organic Milk Production in Poland on the Background of the EU. Agriculture 2021, 11, 323. [Google Scholar] [CrossRef]
- Rakowska, J. European Union Regional Policy Support for Investments in Renewable Energy in Rural Areas of the Mazovian Voivodship. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz. 2020, 22, 279–288. [Google Scholar] [CrossRef]
- Poggi, F.; Firmino, A.; Amado, M. Planning renewable energy in rural areas: Impacts on occupation and land use. Energy 2018, 155, 630–640. [Google Scholar] [CrossRef]
- Naumann, M.; Rudolph, D. Conceptualizing rural energy transitions: Energizing rural studies, ruralizing energy research. J. Rural Stud. 2020, 73, 97–104. [Google Scholar] [CrossRef]
- Huber, M.T.; McCarthy, J. Beyond the subterranean energy regime? Fuel, land use and the production of space. Trans. Inst. Br. Geogr. 2017, 42, 655–668. [Google Scholar] [CrossRef]
- Markantoni, M.; Woolvin, M. The role of rural communities in the transition to a low-carbon Scotland: A review. Local Environ. 2015, 20, 202–219. [Google Scholar] [CrossRef]
- Munday, M.; Bristow, G.; Cowell, R. Wind farms in rural areas: How far do community benefits from wind farms represent a local economic development opportunity? J. Rural Stud. 2011, 27, 1–12. [Google Scholar] [CrossRef]
- Rudolph, D.; Kirkegaard, J.K. Making space for wind farms: Practices of territorial stigmatisation in rural Denmark. Antipode 2019, 51, 642–663. [Google Scholar] [CrossRef]
- Mulvaney, K.K.; Woodson, P.; Prokopy, L.S. A tale of three counties: Understanding wind development in the rural Midwestern United States. Energy Policy 2013, 56, 322–330. [Google Scholar] [CrossRef]
- Cowell, R. Wind power, landscape and strategic, spatial planning—the construction of ‘acceptable locations’ in Wales. Land Use Policy 2010, 27, 222–232. [Google Scholar] [CrossRef]
- Morrison, C.; Ramsey, E. Power to the people: Developing networks through rural community energy schemes. J. Rural Stud. 2019, 70, 169–178. [Google Scholar] [CrossRef]
- Hicks, J.; Ison, N. Community-owned renewable energy (CRE): Opportunities for rural Australia. Rural Soc. 2011, 20, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Velichkov, N. Macroeconomic Effects of Budget Expenditure in Bulgaria (Econometric Analysis). Ikon. I Sotsialni Altern. 2016, 2, 70–83. [Google Scholar]
- European Union. European Commission, Report on Public Finances in EMU 2012: Chapter IV Fiscal Decentralization in the EU—Main Characteristics and Implications for Fiscal Outcomes; European Union: Brussel, Belgium, 2012; pp. 4–5. [Google Scholar]
- Yang, X.; He, L.; Xia, Y.; Chen, Y. Effect of government subsidies on renewable energy investments: The threshold effect. Energy Policy 2019, 132, 156–166. [Google Scholar] [CrossRef]
- Owen, R.; Brennan, G.; Lyon, F. Enabling investment for the transition to a low carbon economy: Government policy to finance early stage green innovation. Curr. Opin. Environ. Sustain. 2018, 31, 137–145. [Google Scholar] [CrossRef]
- Falcone, P.M.; Lopolito, A.; Sica, E. Instrument mix for energy transition: A method for policy formulation. Technol. Forecast. Soc. Chang. 2019, 148, 119706. [Google Scholar] [CrossRef]
- Graczyk, A.M.; Graczyk, A.; Żołyniak, T. System for Financing Investments in Renewable Energy Sources in Poland. In Finance and Sustainability; Springer: Cham, Switzerland, 2020; pp. 153–166. [Google Scholar]
- Hillebrand, B.; Buttermann, H.G.; Behringer, J.M.; Bleuel, M. The expansion of renewable energies and employment effects in Germany. Energy Policy 2006, 34, 3484–3494. [Google Scholar] [CrossRef]
- Frondel, M.; Ritter, N.; Schmidt, C.M.; Vance, C. Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy 2010, 38, 4048–4056. [Google Scholar] [CrossRef] [Green Version]
- Lehr, U.; Lutz, C.; Edler, D. Green jobs? Economic impacts of renewable energy in Germany. Energy Policy 2012, 47, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Kahouli, S.; Martin, J.C. Can offshore wind energy be a lever for job creation in France? Some insights from a local case study. Environ. Modeling Assess. 2018, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
Years | The Level of Energy Production in Power Plants [GWh] | Share of Wind Farms and RES (%) | ||||
---|---|---|---|---|---|---|
Total | Coal | Hydropower Plants | Industrial | Wind Farms and Other RES | ||
1990 | 136,336 | 124,899 | 3300 | 8137 | 0 | 0 |
1995 | 138,701 | 126,362 | 3814 | 8525 | 0 | 0 |
2000 | 144,417 | 139,348 | 3984 | 7655 | 0 | 0 |
2005 | 156,024 | 144,029 | 3587 | 8407 | 0 | 0 |
2006 | 160,848 | 149,676 | 2822 | 8216 | 69 | 0.04 |
2010 | 156,342 | 142,839 | 3268 | 8923 | 1312 | 0.84 |
2015 | 161,772 | 139,640 | 2261 | 9757 | 10,114 | 6.25 |
2019 | 158,767 | 131,791 | 2454 | 10,178 | 14,344 | 9.03 |
Tested Parameters | Kendall’s Tau Correlation Coefficient | |||||
---|---|---|---|---|---|---|
Rural Communes | Urban-Rural Communes | Urban-Rural and Rural Communes Together | ||||
τ | p-Value | τ | p-Value | τ | p-Value | |
Correlation coefficients between value of investment expenditure in renewable energy and | ||||||
average annual total expenditure of the commune in 2016–2019 (PLN) | 0.231 | 0.300 | 0.253 | 0.228 | 0.276 | 0.050 |
average annual capital expenditure of the commune in 2016–2019 (PLN) | −0.026 | 0.855 | 0.473 | 0.022 | 0.276 | 0.050 |
average annual share of property expenditure in the total expenditure of the commune in 2016–2019 (%) | −0.154 | 0.428 | 0.297 | 0.155 | 0.060 | 0.677 |
average annual total income of the commune in 2016–2019 (PLN) | 0.231 | 0.300 | 0.253 | 0.228 | 0.276 | 0.050 |
average annual income of the commune per capita in 2016–2019 (PLN) | −0.231 | 0.246 | 0.033 | 0.913 | −0.060 | 0.647 |
value of co-financing of renewable energy investment projects in communes in 2016–2019 (PLN) | 0.868 | 0.001 | 0.848 | 0.001 | 0.835 | 0.001 |
share of co-financing in the value of investment projects related to renewable energy sources in communes 2016–2019 (%) | 0.055 | 0.827 | −0.295 | 0.113 | −0.128 | 0.338 |
Tested Parameters | Spearman’s Rank Correlation Coefficient | |||||
---|---|---|---|---|---|---|
Rural Communes | Urban-Rural Communes | Urban-Rural and Rural Communes Together | ||||
rs | p-Value | rs | p-Value | rs | p-Value | |
Correlation coefficients between value of investment expenditure in renewable energy and | ||||||
average annual total expenditure of the commune in 2016–2019 (PLN) | 0.275 | 0.100 | 0.371 | 0.100 | 0.373 | 0.050 |
average annual capital expenditure of the commune in 2016–2019 (PLN) | −0.088 | 0.100 | 0.578 | 0.050 | 0.319 | 0.105 |
average annual share of property expenditure in the total expenditure of the commune in 2016–2019 (%) | −0.203 | 0.100 | 0.525 | 0.100 | 0.097 | 0.630 |
average annual total income of the commune in 2016–2019 (PLN) | 0.275 | 0.100 | 0.415 | 0.100 | 0.383 | 0.049 |
average annual income of the commune per capita in 2016–2019 (PLN) | −0.269 | 0.100 | −0.020 | 0.100 | −0.093 | 0.645 |
value of co-financing of renewable energy investment projects in communes in 2016–2019 (PLN) | 0.965 | 0.010 | 0.950 | 0.010 | 0.950 | 0.010 |
share of co-financing in the value of investment projects related to renewable energy sources in communes 2016–2019 (%) | 0.112 | 0.100 | −0.354 | 0.100 | −0.133 | 0.508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klepacki, B.; Kusto, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K.; Perkowska, A.; Rokicki, T. Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas. Energies 2021, 14, 3170. https://doi.org/10.3390/en14113170
Klepacki B, Kusto B, Bórawski P, Bełdycka-Bórawska A, Michalski K, Perkowska A, Rokicki T. Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas. Energies. 2021; 14(11):3170. https://doi.org/10.3390/en14113170
Chicago/Turabian StyleKlepacki, Bogdan, Barbara Kusto, Piotr Bórawski, Aneta Bełdycka-Bórawska, Konrad Michalski, Aleksandra Perkowska, and Tomasz Rokicki. 2021. "Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas" Energies 14, no. 11: 3170. https://doi.org/10.3390/en14113170
APA StyleKlepacki, B., Kusto, B., Bórawski, P., Bełdycka-Bórawska, A., Michalski, K., Perkowska, A., & Rokicki, T. (2021). Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas. Energies, 14(11), 3170. https://doi.org/10.3390/en14113170