# Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- SLR and PR models were used to predict the active power load.
- A new approach, i.e., predict the active power load based on load at last three hours and load at one day before was used with various regression models and dimensionality reduction technique was used to reduce the complexity of the model so that overfitting problem was removed.
- Data analytic tools were used to process the data before feeding it to the model

## 2. Methodology

#### 2.1. Simple Linear Regression Model (SLR)

#### 2.2. Multiple Linear Regression Model (MLR)

#### 2.3. Polynomial Regression Model (PR)

#### 2.4. Dimensionality Reduction

#### 2.5. Model Performance Metrics

## 3. Results

#### 3.1. Simple Linear Regression

#### 3.1.1. Data Analysis

#### 3.1.2. Simple Regression Model Performance Analysis

#### 3.2. Multiple Linear Regression

#### 3.2.1. Data Analysis

#### 3.2.2. Multiple Regression Model Performance Analysis

#### 3.2.3. MLR with Dimensionality Reduction (DR)

#### 3.3. Polynomial Regression Model

#### PR Model Performance Analysis

#### 3.4. Comparative Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

${d}_{a}$ | Distance between actual and predicted outputs |

$DS$ | Dimensionality reduction |

$L(D,t)$ | Load at Day ‘D’ and at hour ‘t’ |

$L(D,t-1)$ | Load at Day ‘D’ and at hour ‘t – 1’ |

$L(D,t-2)$ | Load at Day ‘D’ and at hour ‘t – 2’ |

$L(D,t-3)$ | Load at Day ‘D’ and at hour ‘t – 3’ |

$L(D-1,t)$ | Load at Day ‘D – 1’ and at hour ‘t’ |

$MAE$ | Mean Absolute Error |

$MLR$ | Multiple Linear Regression Model |

$MSE$ | Mean Square Error |

${N}_{a}$ | Total number of samples |

${n}_{a}$ | Batch size |

p | Degree of polynomial |

$PR$ | Polynomial Regression Model |

$RMSE$ | Root Mean Square Error |

$SLR$ | Simple Linear Regression Model |

${X}_{a}$ | ${a}^{\mathrm{th}}$ sample from input dataset |

${X}_{i}^{a}$ | ${i}^{\mathrm{th}}$ input parameter in ${a}^{\mathrm{th}}$ sample from input dataset |

Y | Predicted output using regression model |

${Y}_{a}$ | ${a}^{\mathrm{th}}$ sample from output dataset |

## References

- Almeshaiei, E.; Soltan, H. A methodology for electric power load forecasting. Alex. Eng. J.
**2011**, 50, 137–144. [Google Scholar] [CrossRef][Green Version] - Foldvik Eikeland, O.; Bianchi, F.M.; Apostoleris, H.; Hansen, M.; Chiou, Y.C.; Chiesa, M. Predicting Energy Demand in Semi-Remote Arctic Locations. Energies
**2021**, 14, 798. [Google Scholar] [CrossRef] - Alam, S.; Ali, M. Equation Based New Methods for Residential Load Forecasting. Energies
**2020**, 13, 6378. [Google Scholar] [CrossRef] - Mi, J.; Fan, L.; Duan, X.; Qiu, Y. Short-term power load forecasting method based on improved exponential smoothing grey model. Math. Probl. Eng.
**2018**, 2018. [Google Scholar] [CrossRef][Green Version] - Hu, R.; Wen, S.; Zeng, Z.; Huang, T. A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing
**2017**, 221, 24–31. [Google Scholar] [CrossRef] - Kumar, B.A.; Sangeetha, G.; Srinivas, A.; Awoyera, P.; Gobinath, R.; Ramana, V.V. Models for Predictions of Mechanical Properties of Low-Density Self-compacting Concrete Prepared from Mineral Admixtures and Pumice Stone. In Soft Computing for Problem Solving; Springer: New York, NY, USA, 2020; pp. 677–690. [Google Scholar]
- Awoyera, P.; Akinmusuru, J.; Krishna, A.S.; Gobinath, R.; Arunkumar, B.; Sangeetha, G. Model Development for Strength Properties of Laterized Concrete Using Artificial Neural Network Principles. In Soft Computing for Problem Solving; Springer: New York, NY, USA, 2020; pp. 197–207. [Google Scholar]
- Veeramsetty, V.; Singal, G.; Badal, T. Coinnet: Platform independent application to recognize Indian currency notes using deep learning techniques. Multimed. Tools Appl.
**2020**, 79, 22569–22594. [Google Scholar] [CrossRef] - Bassi, S.; Gomekar, A.; Murthy, A.V. A learning algorithm for time series based on statistical features. Int. J. Adv. Eng. Sci. Appl. Math.
**2019**, 11, 230–235. [Google Scholar] [CrossRef] - Lakshmi, G.N.; Jayalaxmi, A.; Veeramsetty, V. Optimal placement of distributed generation using firefly algorithm. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 981, p. 042060. [Google Scholar]
- Veeramsetty, V.; Chintham, V.; D.M., V.K. Locational marginal price computation in radial distribution system using Self Adaptive Levy Flight based JAYA Algorithm and game theory. Int. J. Emerg. Electr. Power Syst.
**2021**, 22, 215–231. [Google Scholar] - Ali, M.; Iqbal, M.J.; Sharif, M. Relationship between extreme temperature and electricity demand in Pakistan. Int. J. Energy Environ. Eng.
**2013**, 4, 36. [Google Scholar] [CrossRef][Green Version] - Mirmasoudi, S.; Byrne, J.; Kroebel, R.; Johnson, D.; MacDonald, R. A novel time-effective model for daily distributed solar radiation estimates across variable terrain. Int. J. Energy Environ. Eng.
**2018**, 9, 383–398. [Google Scholar] [CrossRef][Green Version] - Panapakidis, I.P.; Dagoumas, A.S. Day-ahead electricity price forecasting via the application of artificial neural network based models. Appl. Energy
**2016**, 172, 132–151. [Google Scholar] [CrossRef] - Amral, N.; Ozveren, C.; King, D. Short term load forecasting using multiple linear regression. In Proceedings of the 2007 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007; pp. 1192–1198. [Google Scholar]
- Kumar, S.; Mishra, S.; Gupta, S. Short term load forecasting using ANN and multiple linear regression. In Proceedings of the 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 12–13 February 2016; pp. 184–186. [Google Scholar]
- Shaloudegi, K.; Madinehi, N.; Hosseinian, S.; Abyaneh, H.A. A novel policy for locational marginal price calculation in distribution systems based on loss reduction allocation using game theory. IEEE Trans. Power Syst.
**2012**, 27, 811–820. [Google Scholar] [CrossRef] - Veeramsetty, V.; Chintham, V.; Vinod Kumar, D. Proportional nucleolus game theory–based locational marginal price computation for loss and emission reduction in a radial distribution system. Int. Trans. Electr. Energy Syst.
**2018**, 28, e2573. [Google Scholar] [CrossRef] - Veeramsetty, V.; Chintham, V.; DM, V.K. LMP computation at DG buses in radial distribution system. Int. J. Energy Sect. Manag.
**2018**, 12, 364–385. [Google Scholar] [CrossRef] - Veeramsetty, V.; Deshmukh, R. Electric power load forecasting on a 33/11 kV substation using artificial neural networks. SN Appl. Sci.
**2020**, 2, 855. [Google Scholar] [CrossRef][Green Version] - Houimli, R.; Zmami, M.; Ben-Salha, O. Short-term electric load forecasting in Tunisia using artificial neural networks. Energy Syst.
**2019**, 11, 357–375. [Google Scholar] [CrossRef] - Lisi, F.; Shah, I. Forecasting next-day electricity demand and prices based on functional models. Energy Syst.
**2019**, 11, 947–979. [Google Scholar] [CrossRef] - Li, K.; Zhang, T. A novel grey forecasting model and its application in forecasting the energy consumption in Shanghai. Energy Syst.
**2019**, 12, 357–372. [Google Scholar] [CrossRef] - Shamir, O.; Zhang, T. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 71–79. [Google Scholar]
- Parol, M.; Piotrowski, P.; Kapler, P.; Piotrowski, M. Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control. Energies
**2021**, 14, 1290. [Google Scholar] [CrossRef] - Zheng, J.; Zhang, L.; Chen, J.; Wu, G.; Ni, S.; Hu, Z.; Weng, C.; Chen, Z. Multiple-Load Forecasting for Integrated Energy System Based on Copula-DBiLSTM. Energies
**2021**, 14, 2188. [Google Scholar] [CrossRef] - Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies
**2021**, 14, 1596. [Google Scholar] [CrossRef] - Venkataramana, V. Active Power Load Dataset. 2020. Available online: http://dx.doi.org/10.17632/ycfwwyyx7d.2 (accessed on 19 May 2021).
- Barga, R.; Fontama, V.; Tok, W.H.; Cabrera-Cordon, L. Predictive Analytics with Microsoft Azure Machine Learning; Springer: New York, NY, USA, 2015. [Google Scholar]

**Figure 12.**SLR: Distribution of actual load ${Y}_{a}$ and predicted load with training dataset and with m = 0.7472 and c = 0.1173.

**Figure 13.**SLR: Distribution of actual load ${Y}_{a}$ and predicted load with testing dataset and with m = 0.7472 and c = 0.1173.

**Figure 18.**MLR With Dimensionality Reduction: comparison of actual load and predicted load with trained MLR model.

Load Prediction Type | Time | Usage |
---|---|---|

Short term | Few hours to days | Electric power generation and transmission scheduling |

Medium term | Few weeks to months | Fuel purchase scheduling |

Long term | 1–10 years | Establishment of power sector entities |

Parameter | Input | Output |
---|---|---|

count | 2160 | 2160 |

mean | 6037 | 6028 |

std | 1066 | 1068 |

min | 3378 | 3378 |

25% | 5263 | 5260 |

50% | 5950 | 5935 |

75% | 6747 | 6739 |

max | 8842 | 8842 |

Parameter | L(D,t−1) | L(D,t−2) | L(D,t−3) | L(D−1,t) | L(D,t) |
---|---|---|---|---|---|

count | 2160 | 2160 | 2160 | 2160 | 2160 |

mean | 6028 | 6028 | 6029 | 6037 | 6028 |

std | 1068 | 1068 | 1068 | 1066 | 1068 |

min | 3378 | 3378 | 3378 | 3378 | 3378 |

25% | 5260 | 5260 | 5260 | 5263 | 5260 |

50% | 5933 | 5935 | 5936 | 5950 | 5935 |

75% | 6739 | 6739 | 6739 | 6747 | 6739 |

max | 8842 | 8842 | 8842 | 8842 | 8842 |

${\mathit{m}}_{1}$ | ${\mathit{m}}_{2}$ | ${\mathit{m}}_{3}$ | ${\mathit{m}}_{4}$ | c |
---|---|---|---|---|

0.618733 | −0.00289 | −0.148361 | 0.374255 | 0.07541947 |

Features | L(D,t−1) | L(D,t−2) | L(D,t−3) | L(D−1,t) |
---|---|---|---|---|

L(D,t−1) | 1 | 0.783398 | 0.547211 | 0.660699 |

L(D,t−2) | 0.783398 | 1 | 0.783336 | 0.472053 |

L(D,t−3) | 0.547211 | 0.783336 | 1 | 0.256744 |

L(D−1,t) | 0.660699 | 0.472053 | 0.256744 | 1 |

${\mathit{m}}_{1}$ | ${\mathit{m}}_{2}$ | ${\mathit{m}}_{3}$ | c |
---|---|---|---|

0.596832 | −0.137541 | 0.392209 | 0.07235393 |

MAE | MSE | RMSE | |
---|---|---|---|

With DR | 0.0748 | 0.0113 | 0.107 |

Without DR | 0.0723 | 0.0105 | 0.103 |

MAE | MSE | RMSE | |
---|---|---|---|

With DR | 0.0679 | 0.009 | 0.093 |

Without DR | 0.0766 | 0.0119 | 0.109 |

Degree (p) | ${\mathit{m}}_{1}$ | ${\mathit{m}}_{2}$ | ${\mathit{m}}_{3}$ | ${\mathit{m}}_{4}$ | ${\mathit{m}}_{5}$ | ${\mathit{m}}_{6}$ | ${\mathit{m}}_{7}$ | ${\mathit{m}}_{8}$ |
---|---|---|---|---|---|---|---|---|

2 | 0.6061 | 0.1345 | NA | NA | NA | NA | NA | NA |

3 | −0.016 | 1.5525 | −0.936 | NA | NA | NA | NA | NA |

4 | −0.235 | 2.4303 | −2.25139 | 0.65556 | NA | NA | NA | NA |

5 | −1.458 | 9.886 | −20.92 | 21.1449 | −8.156 | NA | NA | NA |

10 | 3.8512 | −90.59 | 857.68 | −3885.2 | 10,407 | 17,572.45 | 19067.9 | 13006.7 |

15 | 20.437 | −802.9 | 13357 | −121,706 | 661,929 | −2,132,575 | 3,267,138 | 2,932,709 |

Degree (p) | ${\mathit{m}}_{\mathbf{9}}$ | ${\mathit{m}}_{\mathbf{10}}$ | ${\mathit{m}}_{\mathbf{11}}$ | ${\mathit{m}}_{\mathbf{12}}$ | ${\mathit{m}}_{\mathbf{13}}$ | ${\mathit{m}}_{\mathbf{14}}$ | ${\mathit{m}}_{\mathbf{15}}$ | c |

2 | NA | NA | NA | NA | NA | NA | NA | 0.15478 |

3 | NA | NA | NA | NA | NA | NA | NA | 0.22922 |

4 | NA | NA | NA | NA | NA | NA | NA | 0.24466 |

5 | NA | NA | NA | NA | NA | NA | NA | 0.30014 |

10 | 5113.5 | -888.6 | NA | NA | NA | NA | NA | 0.25182 |

15 | −3 × 10${}^{7}$ | 7 × 10${}^{7}$ | −1 × 10${}^{8}$ | 9.2 × 10${}^{7}$ | −5 × 10${}^{7}$ | 18132030 | −3 × 10${}^{6}$ | 0.19706 |

Polynomial Degree (p) | Training | ||
---|---|---|---|

MAE | MSE | RMSE | |

3 | 0.0973329 | 0.01732 | 0.131609177 |

4 | 0.0973174 | 0.01732 | 0.131591693 |

10 | 0.0970367 | 0.01717 | 0.131019329 |

15 | 0.0969165 | 0.01708 | 0.130697822 |

16 | 0.0968882 | 0.01708 | 0.130688064 |

18 | 0.0969342 | 0.01707 | 0.130644772 |

20 | 0.0970481 | 0.01705 | 0.130574147 |

Polynomial Degree (p) | Training | ||
---|---|---|---|

MAE | MSE | RMSE | |

3 | 0.09289 | 0.015969 | 0.12637 |

4 | 0.09276 | 0.015939 | 0.12625 |

10 | 0.09274 | 0.015889 | 0.12605 |

15 | 0.09295 | 0.015849 | 0.12589 |

16 | 0.09292 | 0.015853 | 0.12591 |

18 | 0.09308 | 0.015877 | 0.12600 |

20 | 0.09311 | 0.015900 | 0.12609 |

Regression | |||
---|---|---|---|

Model | MAE | MSE | RMSE |

SLR | 0.0939 | 0.0163 | 0.1277 |

PR | 0.0930 | 0.0158 | 0.1259 |

MLR | 0.0766 | 0.0119 | 0.1092 |

MLR with DR | 0.0679 | 0.009 | 0.093 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Veeramsetty, V.; Mohnot, A.; Singal, G.; Salkuti, S.R. Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models. *Energies* **2021**, *14*, 2981.
https://doi.org/10.3390/en14112981

**AMA Style**

Veeramsetty V, Mohnot A, Singal G, Salkuti SR. Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models. *Energies*. 2021; 14(11):2981.
https://doi.org/10.3390/en14112981

**Chicago/Turabian Style**

Veeramsetty, Venkataramana, Arjun Mohnot, Gaurav Singal, and Surender Reddy Salkuti. 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models" *Energies* 14, no. 11: 2981.
https://doi.org/10.3390/en14112981