Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters
Abstract
:1. Introduction
- The capturing (and monitoring) of the multi-phase problem [7],
- The determination of a correct discretization of the domain in space and time, with a focus on the spatial discretization in the free surface interface region [8],
- The generation and absorption of waves [9],
- The accommodation of body motion, induced by hydrodynamic and external forces, through dynamic mesh motion methods [10],
- The modeling of turbulence.
1.1. Turbulence Modeling
1.1.1. RANS Model
1.1.2. RANS Model
1.1.3. Wall Treatment
- Outer layer: Inertial forces largely overweight viscous forces
- Log-law layer: Viscous force are smaller than internal forces, but are non-negligible
- Buffer layer: Viscous and inertial forces are approximately equal
- Viscous sublayer: Viscous forces outweigh inertial forces
1.2. Related Studies
1.3. Objectives
1.4. Outline of the Paper
2. Case Study
2.1. WEC Structures
2.2. Input Waves
2.3. Test Cases
2.3.1. Waves-Only
2.3.2. Wave Excitation
2.3.3. Wave-Induced Motion: Heave-Only
2.3.4. Wave-Induced Motion: 3-DoF
3. Numerical Wave Tank
Computational Domain
4. Results and Discussion
4.1. Wave-Only
4.2. Wave Excitation
4.3. Wave-Induced Motion—Heave-Only
4.4. Wave-Induced Motion—3-DoF
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mork, G.; Barstow, S.; Kabuth, A.; Pontes, M. Assessing the global wave energy potential. In Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Shanghai, China, 6–11 June 2010. [Google Scholar]
- Mankins, J.C. Technology Readiness Levels; Technical Report; Office of Space Access and Technology, NASA: Washington, DC, USA, 1995.
- Windt, C.; Davidson, J.; Ringwood, J.V. Numerical analysis of the hydrodynamic scaling effects for the Wavestar wave energy converter. J. Fluids Struct. Under review.
- Tanizawa, K.; Naito, S. A study on parametric roll motions by fully nonlinear numerical wave tank. In Proceedings of the 7th International Offshore and Polar Engineering Conference, Honolulu, HI, USA, 25–30 May 1997. [Google Scholar]
- Kim, C.H.; Clement, A.H.; Tanizawa, K. Recent research and development of numerical wave tanks—A review. Int. J. Offshore Polar Eng. 1999, 9, 1–16. [Google Scholar]
- Kim, J.W.; Jang, H.; Baquet, A.; O’Sullivan, J.; Lee, S.; Kim, B.; Jasak, H. Technical and economic readiness review of CFD-Based numerical wave basin for offshore floater design. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2016; pp. 1–17. [Google Scholar]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Eça, L.; Hoekstra, M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J. Comput. Phys. 2014, 262, 104–130. [Google Scholar] [CrossRef]
- Windt, C.; Davidson, J.; Schmitt, P.; Ringwood, J.V. On the assessment of numerical wave makers in CFD simulations. J. Mar. Sci. Eng. 2019, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Windt, C.; Davidson, J.; Chandar, D.D.; Faedo, N.; Ringwood, J.V. Evaluation of the overset grid method for control studies of wave energy converters in OpenFOAM numerical wave tanks. J. Ocean Eng. Mar. Energy 2020, 6, 55–70. [Google Scholar] [CrossRef]
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Windt, C.; Davidson, J.; Ringwood, J.V. High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks. Renew. Sustain. Energy Rev. 2018, 93, 610–630. [Google Scholar] [CrossRef] [Green Version]
- Launder, B.; Spalding, D. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Boussinesq, J. Essai sur la Théorie des Eaux Courantes; Imprimerie Nationale: Paris, France, 1877. [Google Scholar]
- Versteeg, H.; Malalasekra, W. An Introduction to Computational Fluid Dynamics; Prentice Hall: Harlow, England, 2007. [Google Scholar]
- Shih, T.H.; Liou, W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Shih, T.H.; Liou, W.; Shabbir, A.; Yang, Z.; Zhu, J. A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows–Model Development and Validation; Technical Report; NASA Technical Memorandum 106721; NASA: Washington, DC, USA, 1994.
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. Am. Inst. Aeronaut. Astronaut. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Wilcox, D.C. Comparison of two-equation turbulence models for boundary layers with pressure gradient. Am. Inst. Aeronaut. Astronaut. AIAA J. 1993, 31, 1414–1421. [Google Scholar] [CrossRef]
- Wilcox, D.C. Simulation of Transition with a Two-Equation Turbulence Model. Am. Inst. Aeronaut. Astronaut. AIAA J. 1994, 32, 247–255. [Google Scholar] [CrossRef]
- Menter, F. Performance of popular turbulence model for attached and separated adverse pressure gradient flows. Am. Inst. Aeronaut. Astronaut. AIAA J. 1992, 30, 2066–2072. [Google Scholar] [CrossRef]
- Menter, F. Improved Two-Equation k–ω Turbulence Models for Aerodynamic Flows; Technical Report; NASA Technical Memorandum TM-103975; NASA: Washington, DC, USA, 1992.
- Menter, F. Two-equation eddy-viscosity turbulence models for engineering applications. Am. Inst. Aeronaut. Astronaut. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Menter, F. Eddy Viscosity Transport Equations and Their Relation to the k-ε Model. J. Fluids Eng. 1997, 119, 876–884. [Google Scholar] [CrossRef]
- Schlichting, H. Boundary Layer Theory; Springer: Berlin/Heisenberg, Germany, 1960. [Google Scholar]
- Zaoui, L.; Bouali, B.; Larbi, S.; Benchatti, A. Performance Analysis of a 3D Axisymmetric Oscillating Water Column. Energy Procedia 2014, 50, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Vyzikas, T.; Deshoulieres, S.; Giroux, O.; Barton, M.; Greaves, D. Numerical Study of fixed Oscillatin Water Column with RANS-type two-phase CFD model. Renew. Energy 2017, 102, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Anbarsooz, M.; Faramarzi, A.; Ghasemi, A. A numerical study on the performance of fixed oscillating water column wave energy converter at steep waves. In Proceedings of the ASME 2016 Power Conference, Charlotte, NA, USA, 26–30 June 2016; pp. 1–7. [Google Scholar]
- Alves, M.; Sarmento, A. Non-Linear and Viscous Analisys of the Diffraction Flow in OWC Wave Power Plants. In Proceedings of the 16th International Offshore and Polar Engineering Conference (ISOPE), Lisbon, Portugal, 1–6 July 2006; pp. 179–184. [Google Scholar]
- Bouali, B.; Larbi, S. Contribution to the Geometry Optimization of an Oscillating Water Column Wave Energy Converter. Energy Procedia 2013, 36, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Bouali, B.; Larbi, S. Sequential optimization and performance prediction of an oscillating water column wave energy converter. Ocean Eng. 2017, 131, 162–173. [Google Scholar] [CrossRef]
- Armesto, J.; Guanche, R.; Iturrioz, A.; Vidal, C.; Losada, I. Identification of state-space coefficients for oscillating water columns using temporal series. Ocean Eng. 2014, 79, 43–49. [Google Scholar] [CrossRef]
- Stansby, P.; Gu, H.; Moreno, E.C.; Stallard, T. Drag minimisation for high capture width with three float wave energy converter M4. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC), Nantes, France, 6–11 September 2015. [Google Scholar]
- Gu, H.; Stansby, P.; Stallard, T.; Moreno, E. Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water. J. Fluids Struct. 2018, 82, 343–356. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent V2F Turbulence Model Manual; ANSYS Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Wei, Y.; Rafiee, A.; Henry, A.; Dias, F. Wave interaction with an oscillating wave surge converter, Part I: Viscous effects. Ocean Eng. 2015, 104, 185–203. [Google Scholar] [CrossRef]
- Scarpetta, F.; Torresi, M.; Camporeale, S.; Filianoti, P. CFD simulation of the unsteady flow in an Oscillating Water Column: Comparison between numerical and experimental results for a small scale experimental device. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC), Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Akimoto, H.; Kim, Y.Y.; Tanaka, K. Performance prediction of the rotational wave energy converter using single-bucket drag type turbine. In Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE), San Francisco, CA, USA, 8–13 June 2014; pp. 1–8. [Google Scholar]
- Kamath, A.; Bihs, H.; Arntsen, O. Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean Eng. 2015, 102, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Kamath, A.; Bihs, H.; Arntsen, O. Numerical modeling of power take-off damping in an Oscillating Water Column device. Int. J. Mar. Energy 2015, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, K.; Nihous, G. Study of the force coefficients on plates using an open source numerical wave tank. Ocean Eng. 2016, 118, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Huang, Z. An OpenFOAM–based two–phase flow model for simulating three–dimensional oscillating–water–column devices: Model verification and validation. In Proceedings of the Book of abstracts of the 13th OpenFOAM Workshop (OFW13), Shanghai, China, 24–29 June 2018; pp. 366–368. [Google Scholar]
- Nguyen, D.; Chow, Y.C.; Chen, J.H.; Lin, C.-C. Performance assessment of different RANS turbulence models in numerical simulations for BH-OWSC. In Proceedings of the 13th European Wave and Tidal Energy Conference (EWTEC), Naples, Italy, 1–6 September 2019. [Google Scholar]
- Elhanafi, A.; Fleming, A.; Macfarlane, G.; Leong, Z. Numerical energy balance analysis for an onshore oscillating water column–wave energy converter. Energy 2016, 116, 539–557. [Google Scholar] [CrossRef]
- van Rij, J.; Yu, Y.H.; Guo, Y.; Coe, R. A wave energy converter design load case study. J. Mar. Sci. Eng. 2019, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Devolder, B.; Rauwoens, P.; Troch, P. Towards the numerical simulation of 5 Floating Point Absorber Wave Energy Converts installed in a line array using OpenFOAM. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC), Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Devolder, B.; Troch, P.; Rauwoens, P. Survivability simulation of a wave energy converter in a numerical wave tank. In Proceedings of the Book of abstracts of the 13th OpenFOAM Workshop (OFW13), Shanghai, China, 24–29 June 2018; pp. 308–3011. [Google Scholar]
- Devolder, B.; Stratigaki, V.; Troch, P.; Rauwoens, P. CFD simulations of floating point absorber wave energy converter arrays subjected to regular waves. Energies 2018, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Devolder, B.; Rauwoens, P.; Troch, P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM. Coast. Eng. 2017, 125, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Devolder, B.; Troch, P.; Rauwoens, P. Performance of a buoyancy-modified k-ω and k-ω SST turbulence model for simulating wave breaking under regular waves using OpenFOAM. Coast. Eng. 2018, 138, 49–65. [Google Scholar] [CrossRef] [Green Version]
- cfd Online. Turbulence Intensity. 2020. Available online: https://www.cfd-online.com/Wiki/Turbulence_intensity (accessed on 28 October 2020).
- Windt, C.; Ringwood, J.V.; Davidson, J.; Schmitt, P. CCP-WSI blind test series 3: CFD-based numerical wave tank experiments employing an impulse source wave maker. Int. J. Offshore Polar Eng. 2020, 30, 28–35. [Google Scholar] [CrossRef]
- Windt, C.; Davidson, J.; Schmitt, P.; Ringwood, J.V. Wave–structure interaction of wave energy converters: A sensitivity analysis. Inst. Civ. Eng. Eng. Comput. Mech. 2020, 173, 1–33. [Google Scholar] [CrossRef]
- Ransley, E.J.; Brown, S.A.; Hann, M.; Greaves, D.M.; Windt, C.; Ringwood, J.; Davidson, J.; Schmitt, P.; Yan, S.; Wang, J.X.; et al. Focused wave interactions with floating structures: A blind comparative study. Inst. Civ. Eng. Eng. Comput. Mech. 2020, 173, 1–34. [Google Scholar] [CrossRef]
- Ransley, E.; Yan, S.; Brown, S.; Hann, M.; Graham, D.; Windt, C.; Schmitt, P.; Davidson, J.; Ringwood, J.; Musiedlak, P.H.; et al. A blind comparative study of focused wave interactions with floating structures (CCP-WSI blind test series 3). Int. J. Offshore Polar Eng. 2020, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, F.; Bannon, E.; Conlon, M.; Gaughan, K. Dynamic electrical ratings and the economics of capacity factor for wave energy converter arrays. In Proceedings of the 9th European Wave and Tidal Energy Conference (EWTEC), Southampton, UK, 5–9 September 2011; pp. 1–8. [Google Scholar]
- Goodwin, G.; Graebe, S.; Salgado, M. Control System Design; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 240. [Google Scholar]
- Windt, C.; Faedo, N.; Penalba, M.; Dias, F.; Ringwood, J.V. Reactive control of wave energy devices—The modelling paradox. Appl. Ocean. Res. Submitted.
- ESI. OpenFOAM v1812 Release Notes. 2018. Available online: https://www.openfoam.com/releases/openfoam-v1812/ (accessed on 5 June 2020).
- Higuera, P.; Lara, J.L.; Losada, I. Simulating coastal engineering processes with OpenFOAM. Coast. Eng. 2013, 71, 119–134. [Google Scholar] [CrossRef]
- Schmitt, P.; Elsäßer, B. The application of Froude scaling to model tests of Oscillating Wave Surge Converters. Ocean Eng. 2017, 141, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Palm, J.; Eskilsson, C.; Bergdahl, L.; Bensow, R.E. Assessment of scale effects, viscous forces and induced drag on a point-absorbing wave energy converter by CFD simulations. J. Mar. Sci. Eng. 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
W1 | W2 | ||||||
---|---|---|---|---|---|---|---|
Inertia | CoM | Inertia | CoM | ||||
Ixx [2] | Iyy [2] | Izz [2] | [] | Ixx [2] | Iyy [2] | Izz [2] | [] |
No WFs † | Standard WFs | Low Re WFs | |||||
---|---|---|---|---|---|---|---|
W1 | W2 | W1 | W2 | W1 | W2 | ||
SST | () | ||||||
() | |||||||
WFs: wall functions. |
Euler | Turbulent | ||||||
---|---|---|---|---|---|---|---|
SST | |||||||
nRMS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windt, C.; Davidson, J.; Ringwood, J.V. Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters. Energies 2021, 14, 26. https://doi.org/10.3390/en14010026
Windt C, Davidson J, Ringwood JV. Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters. Energies. 2021; 14(1):26. https://doi.org/10.3390/en14010026
Chicago/Turabian StyleWindt, Christian, Josh Davidson, and John V. Ringwood. 2021. "Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters" Energies 14, no. 1: 26. https://doi.org/10.3390/en14010026
APA StyleWindt, C., Davidson, J., & Ringwood, J. V. (2021). Investigation of Turbulence Modeling for Point-Absorber-Type Wave Energy Converters. Energies, 14(1), 26. https://doi.org/10.3390/en14010026