Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries
Abstract
1. Introduction
2. Literature Review
3. Methodology
4. Data Analysis and Interpretation
5. Conclusions
6. Discussion and Future Recommendation
Author Contributions
Funding
Conflicts of Interest
References
- Jomo, K.S. Industrializing Malaysia: Policy, Performance, Prospects; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Huang, B.; Zhao, J.; Geng, Y.; Tian, Y.; Jiang, P. Energy-related ghg emissions of the textile industry in china. Resour. Conserv. Recycl. 2017, 119, 69–77. [Google Scholar] [CrossRef]
- Raichurkar, P.; Ramachandran, M. Recent trends and developments in textile industry in india. Int. J. Text. Eng. Process. 2015, 1, 47–50. [Google Scholar]
- Chang, J.-H.; Rynhart, G.; Huynh, P. Asean in Transformation: Textiles, Clothing and Footwear: Refashioning the Future; ILO: Geneva, Switzerland, 2016. [Google Scholar]
- Iqbal, M.S.; Shaikh, F.M.; Mahmood, B.; Shafiq, K. Development of textile industrial clusters in pakistan. Asian Soc. Sci. 2010, 6, 123. [Google Scholar] [CrossRef]
- Ahmed, F.E. The rise of the bangladesh garment industry: Globalization, women workers, and voice. NWSA J. 2004, 34–45. [Google Scholar] [CrossRef]
- Talukdar, D.; Meisner, C.M. Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries. World Dev. 2001, 29, 827–840. [Google Scholar] [CrossRef]
- Safeer, A.A.; He, Y.; Abrar, M.; Ullah, A. Diagnostics of the challenges and potential solutions to improve export competitiveness in international markets: The case of pakistani readymade garments industry. J. Compet. 2019, 11, 128. [Google Scholar] [CrossRef]
- Akhtar, P. Drivers of green supply chain initiatives and their impact on economic performance of firms: Evidence from pakistan’s manufacturing sector. J. Compet. 2019, 11, 5. [Google Scholar] [CrossRef]
- Tamazian, A.; Chousa, J.P.; Vadlamannati, K.C. Does higher economic and financial development lead to environmental degradation: Evidence from bric countries. Energy Policy 2009, 37, 246–253. [Google Scholar] [CrossRef]
- Nowak, S.; Ulfik, A. An evaluation of regional development in the context of economic and environmental benefits. Pol. J. Manag. Stud. 2014, 10, 74–83. [Google Scholar]
- Asumadu-Sarkodie, S.; Owusu, P.A. Carbon dioxide emission, electricity consumption, industrialization, and economic growth nexus: The beninese case. Energy Sources Part B Econ. Plan. Policy 2016, 11, 1089–1096. [Google Scholar] [CrossRef]
- Sandin, G.; Peters, G.M. Environmental impact of textile reuse and recycling–a review. J. Clean. Prod. 2018, 184, 353–365. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Tan, Y.; Wang, L.; Shen, M. Decoupling water consumption and environmental impact on textile industry by using water footprint method: A case study in china. Water 2017, 9, 124. [Google Scholar] [CrossRef]
- Ganesan, P.; Thirugnanasambandam, M.; Rajakarunakaran, S.; Devaraj, D. Specific energy consumption and CO2 emission reduction analysis in a textile industry. Int. J. Green Energy 2015, 12, 685–693. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, A. Estimation and factors analysis of carbon emission of textile and apparel industry. Wool Text. J. 2015, 43, 62–65. [Google Scholar]
- Yan, Y.; Wang, C.; Ding, D.; Zhang, Y.; Wu, G.; Wang, L.; Liu, X.; Du, C.; Zhang, Y.; Zhao, C. Industrial carbon footprint of several typical chinese textile fabrics. Acta Ecol. Sin. 2016, 36, 119–125. [Google Scholar] [CrossRef]
- Nimkar, U. Sustainable chemistry: A solution to the textile industry in a developing world. Curr. Opin. Green Sustain. Chem. 2018, 9, 13–17. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kashem, M.A. Carbon emissions, energy consumption and industrial growth in bangladesh: Empirical evidence from ardl cointegration and granger causality analysis. Energy Policy 2017, 110, 600–608. [Google Scholar] [CrossRef]
- Attari, M.I.J.; Hussain, M.; Javid, A.Y. Carbon emissions and industrial growth: An ardl analysis for pakistan. Int. J. Energy Sect. Manag. 2016, 10, 642–658. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Energy consumption and economic growth nexus in tanzania: An ardl bounds testing approach. Energy Policy 2009, 37, 617–622. [Google Scholar] [CrossRef]
- Safa, M.S. Socio-economic factors affecting the income of small-scale agroforestry farms in hill country areas in yemen: A comparison of ols and wls determinants. Small-Scale For. Econ. Manag. Policy 2005, 4, 117–134. [Google Scholar] [CrossRef]
- Sharif, A.; Afshan, S.; Qureshi, M.A. Idolization and ramification between globalization and ecological footprints: Evidence from quantile-on-quantile approach. Environ. Sci. Pollut. Res. 2019, 26, 11191–11211. [Google Scholar] [CrossRef]
- Sim, N.; Zhou, H. Oil prices, us stock return, and the dependence between their quantiles. J. Bank. Financ. 2015, 55, 1–8. [Google Scholar] [CrossRef]
- Ramanathan, R.; He, Q.; Black, A.; Ghobadian, A.; Gallear, D. Environmental regulations, innovation and firm performance: A revisit of the porter hypothesis. J. Clean. Prod. 2017, 155, 79–92. [Google Scholar] [CrossRef]
- Fercoq, A.; Lamouri, S.; Carbone, V. Lean/green integration focused on waste reduction techniques. J. Clean. Prod. 2016, 137, 567–578. [Google Scholar] [CrossRef]
- Dahlbo, H.; Bachér, J.; Lähtinen, K.; Jouttijärvi, T.; Suoheimo, P.; Mattila, T.; Sironen, S.; Myllymaa, T.; Saramäki, K. Construction and demolition waste management–a holistic evaluation of environmental performance. J. Clean. Prod. 2015, 107, 333–341. [Google Scholar] [CrossRef]
- Molina-Azorín, J.F.; Claver-Cortés, E.; Pereira-Moliner, J.; Tarí, J.J. Environmental practices and firm performance: An empirical analysis in the spanish hotel industry. J. Clean. Prod. 2009, 17, 516–524. [Google Scholar] [CrossRef]
- Fernando, Y.; Hor, W.L. Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms. Resour. Conserv. Recycl. 2017, 126, 62–73. [Google Scholar] [CrossRef]
- Noailly, J. Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation. Energy Econ. 2012, 34, 795–806. [Google Scholar] [CrossRef]
- Howarth, R.B.; Haddad, B.M.; Paton, B. The economics of energy efficiency: Insights from voluntary participation programs. Energy Policy 2000, 28, 477–486. [Google Scholar] [CrossRef]
- Yeh, S.; Mishra, G.S.; Fulton, L.; Kyle, P.; McCollum, D.L.; Miller, J.; Cazzola, P.; Teter, J. Detailed assessment of global transport-energy models’ structures and projections. Transp. Res. Part. D Transp. Environ. 2017, 55, 294–309. [Google Scholar] [CrossRef]
- Achour, H.; Belloumi, M. Decomposing the influencing factors of energy consumption in tunisian transportation sector using the lmdi method. Transp. Policy 2016, 52, 64–71. [Google Scholar] [CrossRef]
- Andrés, L.; Padilla, E. Energy intensity in road freight transport of heavy goods vehicles in spain. Energy Policy 2015, 85, 309–321. [Google Scholar] [CrossRef]
- Dasgupta, S.; Roy, J. Analysing energy intensity trends and decoupling of growth from energy use in indian manufacturing industries during 1973–1974 to 2011–2012. Energy Effic. 2017, 10, 925–943. [Google Scholar] [CrossRef]
- Chontanawat, J.; Wiboonchutikula, P.; Buddhivanich, A. Decomposition analysis of the change of energy intensity of manufacturing industries in thailand. Energy 2014, 77, 171–182. [Google Scholar] [CrossRef]
- Bernard, J.-T.; Côté, B. The measurement of the energy intensity of manufacturing industries: A principal components analysis. Energy Policy 2005, 33, 221–233. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Y. Will economic infrastructure development affect the energy intensity of china’s manufacturing industry? Energy Policy 2019, 132, 122–131. [Google Scholar] [CrossRef]
- Elliott, R.J.; Sun, P.; Zhu, T. The direct and indirect effect of urbanization on energy intensity: A province-level study for china. Energy 2017, 123, 677–692. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q. How does information and communication technology affect china’s energy intensity? A three-tier structural decomposition analysis. Energy 2018, 151, 748–759. [Google Scholar] [CrossRef]
- Wang, D.; Han, B. The impact of ict investment on energy intensity across different regions of china. J. Renew. Sustain. Energy 2016, 8, 055901. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Schneider, U.A.; Smith, P. Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Effic. 2009, 2, 195–206. [Google Scholar] [CrossRef]
- Saran, R.K.; Kumar, R.; Yadav, S. Environmental issues in textiles. Adv. Funct. Text. Polym. Fabr. Process. Appl. 2019, 129–151. [Google Scholar]
- Naqvi, S.A.; Arshad, M.; Nadeem, F. Water footprint of cotton textile processing industries; a case study of punjab, pakistan. Am. Sci. Res. J. Eng. Technol. Sci. (Asrjets) 2018, 46, 17–24. [Google Scholar]
- Lucato, W.C.; Costa, E.M.; de Oliveira Neto, G.C. The environmental performance of smes in the brazilian textile industry and the relationship with their financial performance. J. Environ. Manag. 2017, 203, 550–556. [Google Scholar] [CrossRef]
- DiebaÈcker, M. Environmental and social benchmarking for industrial processes in developing countries: A pilot project for the textile industry in india, indonesia and zimbabwe. Integr. Manuf. Syst. 2000, 11, 491–500. [Google Scholar] [CrossRef]
- You, S.; Cheng, S.; Yan, H. The impact of textile industry on china’s environment. Int. J. Fash. Des. Technol. Educ. 2009, 2, 33–43. [Google Scholar] [CrossRef]
- Chavan, R. Indian textile industry-environmental issues. Indian J. Fibre Text. Res. 2001, 26, 11–21. [Google Scholar]
- Martínez, C.I.P. Energy use and energy efficiency development in the german and colombian textile industries. Energy Sustain. Dev. 2010, 14, 94–103. [Google Scholar] [CrossRef]
- Li, R.; Wu, D.D.; Jiang, H. Carbon footprint and its measurement in dyeing and finishing. Dyeing 2011, 37, 40–43. [Google Scholar]
- Wang, H.; Xu, M.-J. Review on theoretical model of carbon emissions in textile industry chain. Shanghai Text. Sci. Technol. 2011, 7, 1–4. [Google Scholar]
- Wang, Z.; Meng, H.; Hua, J.; Ma, Y.-J.; Yang, J.-J. The agglomeration and transferring of pan-yangtze river delta’s textile industry. World Reg. Stud. 2015, 24, 123–130. [Google Scholar]
- Sitompul, R.F.; Owen, A.D. Decomposition of Energy-Related CO2 Emissions in the Indonesian Manufacturing sector. In Proceedings of the 28th Annual IAEE International Conference, Taipei, Taiwan, 3–6 June 2005. [Google Scholar]
- Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M. Comparison analysis of energy intensity for five major sub-sectors of the textile industry in iran. J. Clean. Prod. 2012, 23, 186–194. [Google Scholar] [CrossRef]
- Reddy, B.S.; Ray, B.K. Decomposition of energy consumption and energy intensity in indian manufacturing industries. Energy Sustain. Dev. 2010, 14, 35–47. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Andreou, K. Development of alternative energy sources for ghg emissions reduction in the textile industry by energy recovery from cotton ginning waste. J. Clean. Prod. 2010, 18, 784–790. [Google Scholar] [CrossRef]
- Priambodo, A.; Kumar, S. Energy use and carbon dioxide emission of indonesian small and medium scale industries. Energy Convers. Manag. 2001, 42, 1335–1348. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Ciarapica, F.; Giacchetta, G.; Marchetti, B. A carbon footprint analysis in the textile supply chain. Int. J. Sustain. Eng. 2011, 4, 24–36. [Google Scholar] [CrossRef]
- Hong, G.-B.; Su, T.-L.; Lee, J.-D.; Hsu, T.-C.; Chen, H.-W. Energy conservation potential in taiwanese textile industry. Energy Policy 2010, 38, 7048–7053. [Google Scholar] [CrossRef]
- Lin, B.; Moubarak, M. Decomposition analysis: Change of carbon dioxide emissions in the chinese textile industry. Renew. Sustain. Energy Rev. 2013, 26, 389–396. [Google Scholar] [CrossRef]
- Lin, B.; Ahmad, I. Analysis of energy related carbon dioxide emission and reduction potential in pakistan. J. Clean. Prod. 2017, 143, 278–287. [Google Scholar] [CrossRef]
- Palamutcu, S. Electric energy consumption in the cotton textile processing stages. Energy 2010, 35, 2945–2952. [Google Scholar] [CrossRef]
- Thai, V.; Tokai, A.; Yamamoto, Y.; Nguyen, D. Eco-labeling criteria for textile products with the support of textile flows: A case study of the vietnamese textile industry. J. Sustain. Energy Environ. 2011, 2, 105–115. [Google Scholar]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Arain, H.; Han, L.; Sharif, A.; Meo, M.S. Investigating the effect of inbound tourism on fdi: The importance of quantile estimations. Tour. Econ. 2019. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. 2020. Available online: https://data.worldbank.org/indicator/eg.egy.prim.pp.kd (accessed on 14 April 2020).
- Sharif, A.; Shahbaz, M.; Hille, E. The transportation-growth nexus in USA: Fresh insights from pre-post global crisis period. Transp. Res. Part. A Policy Pract. 2019, 121, 108–121. [Google Scholar] [CrossRef]
- Mishra, S.; Sharif, A.; Khuntia, S.; Meo, S.A.; Khan, S.A.R. Does oil prices impede islamic stock indices? Fresh insights from wavelet-based quantile-on-quantile approach. Resour. Policy 2019, 62, 292–304. [Google Scholar] [CrossRef]
- Oláh, J.; Lengyel, P.; Balogh, P.; Harangi-Rákos, M.; Popp, J. The Role of Biofuels in Food Commodity Prices Volatility and Land Use. J.Compet. 2017, 9, 81–93. [Google Scholar] [CrossRef]
- Rybár, R.; Kudelas, D.; Beer, M. Selected problems of classification of energy sources—What are renewable energy sources? Acta Montan. Slovaca 2015, 20, 172–180. [Google Scholar]
- Tvaronavičienė, M.; Ślusarczyk, B. Energy Transformation towards Sustainability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–333. [Google Scholar]
Countries | Mean | Min. | Max. | Std. Dev. | JB Test | P-Value |
---|---|---|---|---|---|---|
Panel A: Energy Intensity | ||||||
China | 3.172 | 0.426 | 4.462 | 0.321 | 14.821 | 0.000 |
India | 6.548 | 4.731 | 8.548 | 1.224 | 20.882 | 0.000 |
Pakistan | 5.187 | 4.422 | 5.626 | 0.361 | 30.617 | 0.000 |
Bangladesh | 3.544 | 3.129 | 3.901 | 0.225 | 13.270 | 0.000 |
Malaysia | 5.295 | 4.682 | 5.773 | 0.304 | 18.051 | 0.000 |
Indonesia | 4.584 | 3.525 | 5.306 | 0.513 | 18.244 | 0.000 |
Thailand | 5.186 | 4.485 | 5.648 | 0.354 | 34.666 | 0.000 |
Vietnam | 6.151 | 5.619 | 7.548 | 0.486 | 13.845 | 0.001 |
Korea | 7.421 | 6.548 | 8.348 | 0.569 | 22.872 | 0.000 |
Japan | 4.869 | 3.742 | 5.325 | 0.445 | 6.247 | 0.044 |
Panel B: Textile and Clothing Manufacturing | ||||||
China | 11.183 | 9.975 | 14.793 | 1.393 | 14.969 | 0.000 |
India | 10.499 | 7.193 | 15.474 | 2.434 | 23.029 | 0.000 |
Pakistan | 29.244 | 26.129 | 33.329 | 2.786 | 37.453 | 0.000 |
Bangladesh | 38.385 | 19.798 | 51.043 | 9.556 | 91.320 | 0.000 |
Malaysia | 3.480 | 1.552 | 6.485 | 1.637 | 26.247 | 0.000 |
Indonesia | 14.108 | 9.786 | 21.339 | 3.549 | 24.445 | 0.000 |
Thailand | 10.892 | 6.448 | 29.664 | 5.349 | 36.566 | 0.000 |
Vietnam | 17.512 | 9.812 | 21.828 | 3.935 | 16.732 | 0.000 |
Korea | 7.173 | 3.463 | 13.816 | 3.499 | 26.423 | 0.000 |
Japan | 2.850 | 1.585 | 4.744 | 1.144 | 28.310 | 0.000 |
Source: authors’ estimates |
Country | Correlation | t-Statistics | P-Value |
---|---|---|---|
China | 0.945 | 8.382 | 0.000 |
India | 0.917 | 6.968 | 0.000 |
Pakistan | 0.958 | 10.481 | 0.000 |
Bangladesh | 0.981 | 8.358 | 0.000 |
Malaysia | 0.856 | 15.359 | 0.000 |
Indonesia | 0.924 | 19.544 | 0.000 |
Thailand | 0.883 | 22.894 | 0.000 |
Vietnam | 0.893 | 7.437 | 0.000 |
Korea | 0.785 | 15.464 | 0.000 |
Japan | 0.853 | 7.829 | 0.000 |
Source: authors’ estimation |
Quantile | China | India | ||||||
T&C | ENI | T&C | ENI | |||||
α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | |
0.05 | 0.873 | 0.05 | 0.847 | −0.112 | 0.804 | −1.36 | 0.862 | −0.254 |
0.1 | 0.873 | 0.152 | 0.854 | −0.145 | 0.881 | 0.331 | 0.863 | −0.309 |
0.2 | 0.87 | −1.171 | 0.844 | −2.426 | 0.864 | −0.879 | 0.864 | −2.124 |
0.3 | 0.872 | −0.39 | 0.849 | −2.346 | 0.859 | −1.671 | 0.866 | −2.252 |
0.4 | 0.871 | −1.083 | 0.859 | −1.754 | 0.86 | −1.486 | 0.87 | −1.343 |
0.5 | 0.871 | −2.315 | 0.86 | −2.465 | 0.859 | −1.374 | 0.87 | −0.989 |
0.6 | 0.871 | −1.276 | 0.858 | −2.165 | 0.857 | −1.399 | 0.87 | −0.916 |
0.7 | 0.871 | −1.918 | 0.849 | −2.087 | 0.854 | −1.67 | 0.869 | −0.932 |
0.8 | 0.87 | −1.764 | 0.824 | −1.229 | 0.837 | −1.728 | 0.873 | 0.353 |
0.9 | 0.871 | −0.1 | 0.806 | −0.704 | 0.854 | −0.414 | 0.876 | 0.134 |
0.95 | 0.864 | −0.601 | 0.753 | −0.922 | 0.856 | −0.244 | 0.872 | −0.008 |
Quantile | Pakistan | Bangladesh | ||||||
T&C | ENI | T&C | ENI | |||||
α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | |
0.05 | 0.847 | −0.509 | 0.866 | −0.099 | 0.855 | −0.322 | 0.853 | −0.218 |
0.1 | 0.854 | −1.768 | 0.873 | 0.027 | 0.859 | −1.412 | 0.858 | −0.718 |
0.2 | 0.853 | −2.236 | 0.867 | −0.632 | 0.862 | −1.796 | 0.867 | −0.439 |
0.3 | 0.854 | −2.054 | 0.87 | −0.414 | 0.864 | −1.61 | 0.864 | −1.137 |
0.4 | 0.855 | −1.927 | 0.87 | −1.051 | 0.867 | −1.616 | 0.863 | −1.718 |
0.5 | 0.855 | −2.071 | 0.87 | −2.262 | 0.868 | −1.673 | 0.862 | −2.076 |
0.6 | 0.856 | −0.99 | 0.87 | −1.114 | 0.863 | −1.745 | 0.862 | −1.722 |
0.7 | 0.857 | −1.314 | 0.868 | −0.832 | 0.862 | −1.707 | 0.862 | −1.646 |
0.8 | 0.857 | −1.456 | 0.867 | −0.627 | 0.863 | −1.706 | 0.862 | −1.011 |
0.9 | 0.849 | −1.721 | 0.853 | −0.674 | 0.859 | −0.7 | 0.869 | −0.12 |
0.95 | 0.845 | −0.583 | 0.848 | −0.383 | 0.855 | −0.481 | 0.829 | −0.347 |
Quantile | Malaysia | Indonesia | ||||||
T&C | ENI | T&C | ENI | |||||
α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | |
0.05 | 0.849 | −1.524 | 0.873 | 0.588 | 0.896 | 0.052 | 0.869 | −0.115 |
0.1 | 0.86 | −2.133 | 0.873 | 0.788 | 0.896 | 0.156 | 0.876 | −0.149 |
0.2 | 0.857 | −1.726 | 0.872 | 1.39 | 0.893 | −1.202 | 0.866 | −2.49 |
0.3 | 0.867 | −1.878 | 0.87 | 1.407 | 0.895 | −0.4 | 0.872 | −2.408 |
0.4 | 0.868 | −1.544 | 0.871 | 0.737 | 0.894 | −1.111 | 0.882 | −1.801 |
0.5 | 0.867 | −1.75 | 0.871 | −0.617 | 0.894 | −2.376 | 0.883 | −2.53 |
0.6 | 0.868 | −1.806 | 0.869 | −1.362 | 0.894 | −1.309 | 0.881 | −2.222 |
0.7 | 0.867 | −1.918 | 0.865 | −0.894 | 0.894 | −1.969 | 0.872 | −2.143 |
0.8 | 0.858 | −2.035 | 0.86 | −0.4 | 0.893 | −1.811 | 0.846 | −1.261 |
0.9 | 0.857 | −0.85 | 0.774 | −1.724 | 0.894 | −0.103 | 0.827 | −0.723 |
0.95 | 0.858 | −0.588 | 0.662 | −1.707 | 0.887 | −0.617 | 0.773 | −0.947 |
Quantile | Thailand | Vietnam | ||||||
T&C | ENI | T&C | ENI | |||||
α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | |
0.05 | 0.825 | −1.396 | 0.885 | −0.261 | 0.87 | −0.522 | 0.889 | −0.102 |
0.1 | 0.905 | 0.34 | 0.886 | −0.317 | 0.877 | −1.814 | 0.896 | 0.027 |
0.2 | 0.887 | −0.902 | 0.887 | −2.18 | 0.875 | −2.295 | 0.89 | −0.648 |
0.3 | 0.882 | −1.715 | 0.889 | −2.312 | 0.876 | −2.108 | 0.893 | −0.424 |
0.4 | 0.882 | −1.525 | 0.893 | −1.378 | 0.877 | −1.978 | 0.893 | −1.079 |
0.5 | 0.882 | −1.41 | 0.893 | −1.016 | 0.878 | −2.126 | 0.893 | −2.321 |
0.6 | 0.88 | −1.436 | 0.893 | −0.94 | 0.878 | −1.016 | 0.893 | −1.143 |
0.7 | 0.876 | −1.714 | 0.892 | −0.956 | 0.879 | −1.349 | 0.891 | −0.854 |
0.8 | 0.859 | −1.773 | 0.897 | 0.362 | 0.88 | −1.494 | 0.89 | −0.643 |
0.9 | 0.876 | −0.425 | 0.899 | 0.138 | 0.871 | −1.767 | 0.875 | −0.692 |
0.95 | 0.879 | −0.251 | 0.895 | −0.009 | 0.868 | −0.598 | 0.871 | −0.393 |
Quantile | South Korea | Japan | ||||||
T&C | ENI | T&C | ENI | |||||
α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | α(τ) | t-stats | |
0.05 | 0.877 | −0.331 | 0.876 | −0.224 | 0.871 | −1.565 | 0.896 | 0.604 |
0.1 | 0.882 | −1.45 | 0.881 | −0.737 | 0.882 | −2.19 | 0.896 | 0.809 |
0.2 | 0.884 | −1.844 | 0.89 | −0.451 | 0.88 | −1.772 | 0.895 | 1.427 |
0.3 | 0.887 | −1.653 | 0.887 | −1.167 | 0.89 | −1.928 | 0.894 | 1.444 |
0.4 | 0.89 | −1.658 | 0.886 | −1.763 | 0.89 | −1.584 | 0.894 | 0.756 |
0.5 | 0.891 | −1.717 | 0.885 | −2.131 | 0.89 | −1.796 | 0.894 | −0.633 |
0.6 | 0.886 | −1.791 | 0.885 | −1.768 | 0.891 | −1.854 | 0.892 | −1.398 |
0.7 | 0.885 | −1.752 | 0.885 | −1.69 | 0.89 | −1.969 | 0.888 | −0.918 |
0.8 | 0.886 | −1.751 | 0.885 | −1.038 | 0.881 | −2.089 | 0.883 | −0.41 |
0.9 | 0.881 | −0.719 | 0.892 | −0.123 | 0.88 | −0.872 | 0.795 | −1.769 |
0.95 | 0.878 | −0.494 | 0.85 | −0.356 | 0.881 | −0.603 | 0.68 | −1.752 |
Source: Authors’ Estimation |
China | Indonesia | ||||||||||
Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% | Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% |
ENIt vs. T&Ct | α | 2321.246 | 1118.771 | 835.246 | 293.126 | ENIt vs. T&Ct | A | 1110.689 | 535.319 | 399.655 | 140.257 |
δ | 465.286 | 244.154 | 136.81 | 119.346 | Δ | 222.634 | 116.825 | 65.462 | 57.106 | ||
India | Thailand | ||||||||||
Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% | Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% |
ENIt vs. T&Ct | α | 3137.966 | 959.516 | 524.846 | 257.649 | ENIt vs. T&Ct | A | 1501.48 | 459.117 | 251.132 | 123.282 |
δ | 854.036 | 319.921 | 190.71 | 137.41 | Δ | 408.646 | 153.078 | 91.252 | 65.749 | ||
Pakistan | Vietnam | ||||||||||
Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% | Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% |
ENIt vs. T&Ct | α | 1907.117 | 1253.856 | 765.913 | 514.174 | ENIt vs. T&Ct | A | 912.533 | 599.955 | 366.48 | 246.026 |
δ | 1118.8 | 646.329 | 379.385 | 165.604 | Δ | 535.333 | 309.261 | 181.531 | 79.24 | ||
Bangladesh | South Korea | ||||||||||
Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% | Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% |
ENIt vs. T&Ct | α | 4304.168 | 1254.004 | 844.698 | 466.681 | ENIt vs. T&Ct | α | 2059.494 | 600.026 | 404.178 | 223.301 |
δ | 2436.524 | 970.314 | 563.462 | 293.199 | δ | 1165.848 | 464.284 | 269.61 | 140.292 | ||
Malaysia | Japan | ||||||||||
Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% | Model | Coefficient | Supremum norm value | Critical Value at 1% | Critical Value at 5% | Critical Value at 10% |
ENIt vs. T&Ct | α | 2937.394 | 1501.96 | 1071.565 | 822.234 | ENIt vs. T&Ct | α | 1405.509 | 718.67 | 512.731 | 393.429 |
δ | 1240.125 | 862.113 | 421.565 | 257.702 | δ | 593.385 | 412.511 | 201.714 | 123.307 |
China | ||||||||||||
Causality | [0.05–0.95] | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.95 |
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
India | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pakistan | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Bangladesh | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Malaysia | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Indonesia | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Thailand | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.195 | 0.493 | 0.543 | 0.584 | 0.603 | 0.689 | 0.712 | 0.642 | 0.543 | 0.49 | 0.327 | 0.215 |
Vietnam | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
South Korea | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Japan | ||||||||||||
ΔT&Ct to ΔENIt | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ΔENIt to ΔT&Ct | 0.482 | 0.148 | 0.264 | 0.331 | 0.548 | 0.427 | 0.368 | 0.301 | 0.287 | 0.216 | 0.189 | 0.167 |
Source: Authors’ Estimation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, M.; Kot, S.; Hussain, H.I.; Mihardjo, L.W.; Saługa, P. Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries. Energies 2020, 13, 2229. https://doi.org/10.3390/en13092229
Haseeb M, Kot S, Hussain HI, Mihardjo LW, Saługa P. Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries. Energies. 2020; 13(9):2229. https://doi.org/10.3390/en13092229
Chicago/Turabian StyleHaseeb, Muhammad, Sebastian Kot, Hafezali Iqbal Hussain, Leonardus WW Mihardjo, and Piotr Saługa. 2020. "Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries" Energies 13, no. 9: 2229. https://doi.org/10.3390/en13092229
APA StyleHaseeb, M., Kot, S., Hussain, H. I., Mihardjo, L. W., & Saługa, P. (2020). Modelling the Non-Linear Energy Intensity Effect Based on a Quantile-on-Quantile Approach: The Case of Textiles Manufacturing in Asian Countries. Energies, 13(9), 2229. https://doi.org/10.3390/en13092229