The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses
Abstract
:1. Introduction
2. Methods and Materials
2.1. Simulation and Optimization
2.2. Building Descriptions
2.3. Retrofitted Building Configurations
3. Results
3.1. Buildings With District Heating
3.2. Buildings with Wood Boilers
3.3. Buildings with Direct Electric Heating
3.4. Buildings with Ground-Source Heat Pumps
3.5. Effect on Building Stock
3.6. Summary
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. EU Climate Action-2050 Long-Term Strategy. 2016. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 4 January 2020).
- Kavvadias, K.; Jiménez-Navarro, J.P.; Thomassen, G. Decarbonising the EU Heating Sector - Integration of the Power and Heating Sector. Publications Office of the European Union, EUR 29772 EN. 2019. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC114758/kjna29772enn.pdf (accessed on 7 February 2020).
- European Parliament. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; European Parliament: Brussels, Belgium, 2010. [Google Scholar]
- European Parliament. Directive (EU) 2018/844 of the European Parliament and of the Council Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on the Energy Efficiency; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Ministry of the Environment. 4/13 Asetus Rakennuksen Energiatehokkuuden Parantamisesta Korjaus-ja Muutostöissä (4/13 Decree on Improving Energy Performance in Renovations). 2013. Available online: http://www.ym.fi/download/noname/%7B924394EF-BED0-42F2-9AD2-5BE3036A6EAD%7D/31396 (accessed on 17 January 2020).
- Statistics Finland. Number of Buildings by Intended Use and Year of Construction on 31 Dec. 2015. 2016. Available online: http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__asu__rakke/?tablelist=true (accessed on 10 November 2019).
- Oberegger, U.F.; Pernetti, R.; Lollini, R.; Ulrich, F.O.; Roberta, P.; Roberto, L. Bottom-up building stock retrofit based on levelized cost of saved energy. Energy Build. 2020, 210, 109757. [Google Scholar] [CrossRef]
- Ekström, T.; Blomsterberg, Å. Renovation of Swedish Single-family Houses to Passive House Standard–Analyses of Energy Savings Potential. Energy Procedia 2016, 96, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.; O’Connell, J.; Goggins, J. Sustainable energy efficiency retrofits as residenial buildings move towards nearly zero energy building (NZEB) standards. Energy Build. 2020, 211, 109816. [Google Scholar] [CrossRef]
- Niemelä, T.; Kosonen, R.; Jokisalo, J. Cost-effectiveness of energy performance renovation measures in Finnish brick apartment buildings. Energy Build. 2017, 137, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen, J.; Jokisalo, J.; Heljo, V.J.; Kosonen, R. Towards the EU emissions targets of 2050: Optimal energy renovation measures of Finnish apartment buildings. Int. J. Sustain. Energy 2018, 38, 649–672. [Google Scholar] [CrossRef] [Green Version]
- Niemelä, T.; Levy, K.; Kosonen, R.; Jokisalo, J. Cost-optimal renovation solutions to maximize environmental performance, indoor thermal conditions and productivity of office buildings in cold climate. Sustain. Cities Soc. 2017, 32, 417–434. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen, J.; Jokisalo, J.; Heljo, J.; Kosonen, R. Towards the EU Emission Targets of 2050: Cost-Effective Emission Reduction in Finnish Detached Houses. Energies 2019, 12, 4395. [Google Scholar] [CrossRef] [Green Version]
- Paiho, S.; Pulakka, S.; Knuuti, A. Life-cycle cost analyses of heat pump concepts for Finnish new nearly zero energy residential buildings. Energy Build. 2017, 150, 396–402. [Google Scholar] [CrossRef]
- Grimm, V.; Zoettl, G. Investment Incentives and Electricity Spot Market Competition. J. Econ. Manag. Strat. 2013, 22, 832–851. [Google Scholar] [CrossRef] [Green Version]
- Grimm, V.; Martin, A.; Schmidt, M.; Weibelzahl, M.; Zöttl, G. Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes. Eur. J. Oper. Res. 2016, 254, 493–509. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, X.; Gu, J.; Schmidt, F.P.; Li, W. Measures to improve energy demand flexibility in buildings for demand response (DR): A review. Energy Build. 2018, 177, 125–139. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Xiao, F. An adaptive optimal monthly peak building demand limiting strategy considering load uncertainty. Appl. Energy 2019, 253, 113582. [Google Scholar] [CrossRef]
- Deng, X.; Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models. J. Clean. Prod. 2020, 246, 118962. [Google Scholar] [CrossRef]
- Qu, K.; Chen, X.; Ekambaram, A.; Cui, Y.; Gan, G.; Økland, A.; Riffat, S. A novel holistic EPC related retrofit approach for residential apartment building renovation in Norway. Sustain. Cities Soc. 2020, 54, 101975. [Google Scholar] [CrossRef]
- Garriga, S.M.; Dabbagh, M.; Krarti, M. Optimal carbon-neutral retrofit of residential communities in Barcelona, Spain. Energy Build. 2020, 208, 109651. [Google Scholar] [CrossRef]
- Rakhshan, K.; Friess, W.A. Effectiveness and viability of residential building energy retrofits in Dubai. J. Build. Eng. 2017, 13, 116–126. [Google Scholar] [CrossRef]
- Hirvonen, J.; Jokisalo, J.; Heljo, V.J.; Kosonen, R. Effect of apartment building energy renovation on hourly power demand. Int. J. Sustain. Energy 2019, 38, 918–936. [Google Scholar] [CrossRef]
- Patronen, J.; Kaura, E.; Torvestad, C. Nordic Heating and Cooling; Nordic Council of Ministers: Copenhagen, Denmark, 2017. [Google Scholar]
- Dodoo, A. Techno-economic and environmental performances of heating systems for single-family code-compliant and passive houses. E3S Web Conf. 2019, 111, 03039. [Google Scholar] [CrossRef] [Green Version]
- EQUA Simulation. IDA ICE-Simulation Software. 2019. Available online: https://www.equa.se/en/ida-ice (accessed on 8 August 2019).
- EQUA Simulation. Validation of IDA Indoor Climate and Energy 4.0 with Respect to CEN Standards EN 15255-2007 and EN 15265-2007; EQUA Simulation: Solna, Sweden, 2010. [Google Scholar]
- Loutzenhiser, P.; Manz, H.; Maxwell, G. Empirical Validations of Shading/Daylighting/Load Interactions in Building Energy Simulation Tools; IEA-International Energy Agency: Zürich, Switzerland, 2007. [Google Scholar]
- Koivuniemi, J. Lämpimän käyttöveden mitoitusvirtaama ja lämpötilakriteerit veden mikrobiologisen laadun kannalta kaukolämmitetyissä Taloissa Domestic Hot Water Design Flow and Temperature Criteria as Pertains to Water Microbiological Quality in District Heated Houses. In Finnish. M.Sc. Thesis, Helsinki University of Technology, Espoo, Finland, 2005. [Google Scholar]
- Degefa, M.Z. Electrical Load Disaggregation-A Project Report of SGEM; SGEM: Espoo, Finland, 2012. [Google Scholar]
- Palonen, M.; Hamdy, M.; Hasan, A. MOBO a new software for multi-objective building performance optimization. Presented at the 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meayarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Saari, A.; Airaksinen, M. Energiatehokkuutta Koskevien vähimmäisvaatimusten Kustannusoptimaalisten Tasojen Laskenta; [In Finnish]; EU Commission: Brussels, Belgium, 2012; Available online: https://docplayer.fi/388965-Energiatehokkuutta-koskevien-vahimmaisvaatimusten-kustannusoptimaalisten-tasojen-laskenta-suomi.html (accessed on 7 April 2020).
- Ministry of the Environment. Directive on Building Energy Certificates, Attachment 1 [In Finnish]. 2017. Available online: https://www.finlex.fi/data/sdliite/liite/6822.pdf (accessed on 12 December 2018).
- Ministry of the Environment. Ympäristöministeriön asetus uuden rakennuksen energiatehokkuudesta (1010/2017) (Decree of the Ministry of the Environment on the Energy Performance of the New Building (1010/2017) [In Finnish]. 2018. Available online: https://www.finlex.fi/fi/laki/alkup/2017/20171010 (accessed on 12 January 2020).
- Kalamees, T.; Jylhä, K.; Tietäväinen, H.; Jokisalo, J.; Ilomets, S.; Hyvönen, R.; Saku, S. Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energy Build. 2012, 47, 53–60. [Google Scholar] [CrossRef]
- Finnish Meteorological Institute. Test Reference Years for Energy Calculations [In Finnish]. 19 November 2018. Available online: https://ilmatieteenlaitos.fi/energialaskennan-testivuodet-nyky (accessed on 2 April 2019).
- Finnish Energy. Aurinkosähkön tuotantokapasiteetti lisääntyi 82% vuodessa. Energiavirasto. Available online: https://energiavirasto.fi/tiedote/-/asset_publisher/aurinkosahkon-tuotantokapasiteetti-lisaantyi-82-vuodessa (accessed on 13 February 2020).
- Zakeri, B.; Syri, S.; Rinne, S. Higher renewable energy integration into the existing energy system of Finland–Is there any maximum limit? Energy 2015, 92, 244–259. [Google Scholar] [CrossRef]
- Hirvonen, J.; Sirén, K. A novel fully electrified solar heating system with a high renewable fraction—Optimal designs for a high latitude community. Renew. Energy 2018, 127, 298–309. [Google Scholar] [CrossRef]
- Hirvonen, J.; Kayo, G.; Hasan, A.; Sirén, K. Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions. Appl. Energy 2016, 167, 255–269. [Google Scholar] [CrossRef]
- Schibuola, L.; Scarpa, M.; Tambani, C. Demand response management by means of heat pumps controlled via real time pricing. Energy Build. 2015, 90, 15–28. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; AlSagri, A.S. A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems. Energy 2020, 193, 116781. [Google Scholar] [CrossRef]
- Traficom, Uusien henkilöautojen ensirekisteröinnit laskussa–sähköautojen ja käytettyjen ladattavien hybridien määrät kasvussa, Traficom. Available online: https://www.traficom.fi//fi/ajankohtaista/uusien-henkiloautojen-ensirekisteroinnit-laskussa-sahkoautojen-ja-kaytettyjen (accessed on 13 February 2020).
- Rehfeldt, M.; Worrell, E.; Eichhammer, W.; Fleiter, T. A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030. Renew. Sustain. Energy Rev. 2020, 120, 109672. [Google Scholar] [CrossRef]
- Hänggi, S.; Elbert, P.; Bütler, T.; Cabalzar, U.; Teske, S.; Bach, C.; Onder, C. A review of synthetic fuels for passenger vehicles. Energy Rep. 2019, 5, 555–569. [Google Scholar] [CrossRef]
Building Age Class | SH1 | SH2 | SH3 | SH4 | |
---|---|---|---|---|---|
Construction years | –1975 | 1976–2002 | 2003–2009 | 2010– | |
U-values of envelope (W/(m2·K)) | External wall | 0.58 | 0.28 | 0.25 | 0.17 |
Floor | 0.48 | 0.36 | 0.25 | 0.16 | |
Ceiling | 0.34 | 0.22 | 0.16 | 0.09 | |
Doors | 1.4 | 1.4 | 1.4 | 1.0 | |
Windows | 1.8 | 1.6 | 1.4 | 1.0 | |
Total solar heat transmittance (g) | 0.71 | 0.59 | 0.46 | 0.46 | |
Direct solar transmittance (ST) | 0.64 | 0.52 | 0.39 | 0.39 | |
Air tightness | n50, (1/h) | 6 | 4 | 3.5 | 2 |
q50m3/(h m2) | 15.6 | 10.4 | 9.1 | 5.2 | |
Ventilation | Type | Natural ventilation | Mech. E. vent. | Mech. S.&E. vent. | Mech. S.&E vent. |
Heat recovery temp. eff. | 0 | 0 | 0.55 | 0.65 | |
Ventilation rate (L/s/m2) | 0.30 | 0.33 | 0.36 | 0.36 | |
Total air exchange rate (1/h) | 0.41 | 0.46 | 0.5 | 0.5 | |
SFP (kW/m3/s) | 0 | 1.5 | 2.5 | 2 | |
Heating setpoint (°C) | 22 | 22 | 21.5 | 21 |
SH1 | Emissions | LCC | Electricity Demand | DH / Boiler Demand | U-Values (W/m2K) | ST Cap | PV Cap | Ventilation Type | Distribution Temperature | GSHP Capacity | AAHP Capacity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution | kg-CO2/m2/a | €/m2/25a | kWh/m2 | kWh/m2 | Walls | Roof | Doors | Windows | m2 | kWp | - | °C | kWth | kWth |
DH Ref | 41.3 | 497.7 | 20.6 | 234.3 | 0.58 | 0.34 | 1.4 | 1.8 | 0 | 0 | Natural | 70 | 0 | 0 |
DH D | 24.2 | 449.6 | 34.4 | 117.5 | 0.2 | 0.1 | 1.4 | 1.8 | 2 | 0 | Natural | 70 | 0 | 2 |
DH B | 13.8 | 544.9 | 23.7 | 62.7 | 0.1 | 0.1 | 1.4 | 0.6 | 18 | 7 | Natural | 70 | 0 | 3 |
Oil Ref | 61.6 | 729.8 | 20.6 | 234.3 | 0.58 | 0.34 | 1.4 | 1.8 | 0 | 0 | Natural | 70 | 0 | 0 |
Wood Ref | 94.4 | 491.9 | 20.6 | 234.3 | 0.58 | 0.34 | 1.4 | 1.8 | 0 | 0 | Natural | 70 | 0 | 0 |
Wood D | 52.3 | 452.6 | 34.4 | 117.5 | 0.2 | 0.1 | 1.4 | 1.8 | 2 | 0 | Natural | 70 | 0 | 2 |
Wood B | 28.7 | 552.4 | 25.0 | 62.2 | 0.1 | 0.09 | 1.4 | 0.6 | 16 | 5 | Natural | 70 | 0 | 5 |
Elec Ref | 32.6 | 768.5 | 224.8 | 0 | 0.58 | 0.34 | 1.4 | 1.8 | 0 | 0 | Natural | - | 0 | 0 |
Elec D | 12.1 | 559.5 | 81.6 | 0 | 0.15 | 0.09 | 1.4 | 1.8 | 6 | 9 | Mech (75%) + VAV | - | 0 | 2 |
Elec B | 8.4 | 617.7 | 56.4 | 0 | 0.1 | 0.09 | 1 | 0.6 | 14 | 8 | Mech (75%) + VAV | - | 0 | 3 |
GSHP Ref | 13.0 | 381.8 | 89.5 | 0 | 0.58 | 0.34 | 1.4 | 1.8 | 0 | 0 | Natural | 70 | 10 (68%) | 0 |
GSHP D | 8.1 | 437.3 | 55.1 | 0 | 0.2 | 0.12 | 1.4 | 1.8 | 0 | 10 | Natural | 70 | 7 (68%) | 0 |
GSHP B | 5.1 | 550.2 | 34.8 | 0 | 0.1 | 0.1 | 1.4 | 0.6 | 8 | 9 | Natural | 40 | 8 (110%) | 0 |
SH2 | Emissions | LCC | Electricity Demand | DH / Boiler Demand | U-Values (W/m2K) | ST Cap | PV Cap | Ventilation Type | Distribution Temperature | GSHP Capacity | AAHP Capacity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution | kg-CO2/m2/a | €/m2/25a | kWh/m2 | kWh/m2 | Walls | Roof | Doors | Windows | m2 | kWp | - | °C | kWth | kWth |
DH Ref | 32.2 | 435.0 | 23.2 | 177.0 | 0.28 | 0.22 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 0 | 0 |
DH D | 24.0 | 421.4 | 38.6 | 112.6 | 0.19 | 0.08 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 0 | 3 |
DH B | 13.3 | 528.4 | 25.5 | 58.1 | 0.1 | 0.08 | 1 | 0.6 | 18 | 7 | Mech E | 70 | 0 | 5 |
Oil Ref | 46.6 | 605.1 | 23.2 | 177.0 | 0.28 | 0.22 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 0 | 0 |
Wood Ref | 71.3 | 428.4 | 23.2 | 177.0 | 0.28 | 0.22 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 0 | 0 |
Wood D | 57.4 | 424.8 | 39.9 | 121.1 | 0.28 | 0.08 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 0 | 3 |
Wood B | 29.1 | 536.8 | 26.5 | 59.1 | 0.12 | 0.08 | 1.4 | 0.6 | 20 | 5 | Mech E | 70 | 0 | 5 |
Elec Ref | 25.8 | 639.9 | 179.2 | 0 | 0.28 | 0.22 | 1.4 | 1.6 | 0 | 0 | Mech E | - | 0 | 0 |
Elec D | 15.5 | 530.2 | 104.6 | 0 | 0.19 | 0.08 | 1.4 | 1.6 | 6 | 7 | Mech E | - | 0 | 5 |
Elec B | 10.5 | 616.6 | 70.4 | 0 | 0.08 | 0.08 | 0.8 | 0.6 | 20 | 7 | Mech E | - | 0 | 4 |
GSHP Ref | 10.7 | 339.0 | 74.6 | 0 | 0.28 | 0.22 | 1.4 | 1.6 | 0 | 0 | Mech E | 70 | 8 (76%) | 0 |
GSHP D | 8.3 | 404.3 | 56.7 | 0 | 0.28 | 0.08 | 1.4 | 1.6 | 0 | 10 | Mech E | 70 | 7 (71%) | 0 |
GSHP B | 5.3 | 551.7 | 35.7 | 0 | 0.08 | 0.08 | 1 | 0.8 | 12 | 7 | Mech E | 40 | 6 (93%) | 0 |
SH3 | Emissions | LCC | Electricity Demand | DH / Boiler Demand | U-Values (W/m2K) | ST Cap | PV Cap | Ventilation Type | Distribution Temperature | GSHP Capacity | AAHP Capacity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution | kg-CO2/m2/a | €/m2/25a | kWh/m2 | kWh/m2 | Walls | Roof | Doors | Windows | m2 | kWp | - | °C | kWth | kWth |
DH Ref | 28.2 | 401.8 | 28.4 | 148.3 | 0.25 | 0.16 | 1.4 | 1.4 | 0 | 0 | Mech (55%) | 40 | 0 | 0 |
DH D | 22.2 | 391.1 | 34.0 | 106.6 | 0.25 | 0.08 | 1.4 | 1.4 | 2 | 0 | Mech (55%) + VAV | 40 | 0 | 1 |
DH B | 12.2 | 492.4 | 24.9 | 52.3 | 0.1 | 0.09 | 1.4 | 0.8 | 14 | 7 | Mech (75%) + VAV | 40 | 0 | 5 |
Oil Ref | 39.0 | 555.1 | 28.4 | 148.3 | 0.25 | 0.16 | 1.4 | 1.4 | 0 | 0 | Mech (55%) | 40 | 0 | 0 |
Wood Ref | 59.7 | 409.1 | 28.4 | 148.3 | 0.25 | 0.16 | 1.4 | 1.4 | 0 | 0 | Mech (55%) | 40 | 0 | 0 |
Wood D | 47.7 | 407.4 | 34.0 | 106.6 | 0.25 | 0.08 | 1.4 | 1.4 | 2 | 0 | Mech (55%) + VAV | 40 | 0 | 1 |
Wood B | 24.8 | 516.6 | 26.7 | 52.1 | 0.1 | 0.07 | 1 | 0.6 | 10 | 2 | Mech (75%) + VAV | 40 | 0 | 5 |
Elec Ref | 23.8 | 605.9 | 166.6 | 0 | 0.25 | 0.16 | 1.4 | 1.4 | 0 | 0 | Mech (55%) | - | 0 | 0 |
Elec D | 14.0 | 512.4 | 94.2 | 0 | 0.17 | 0.07 | 1.4 | 1.4 | 6 | 9 | Mech (55%) + VAV | - | 0 | 3 |
Elec B | 10.2 | 578.5 | 68.2 | 0 | 0.1 | 0.07 | 1.4 | 0.6 | 14 | 8 | Mech (75%) + VAV | - | 0 | 4 |
GSHP Ref | 9.3 | 316.2 | 66.0 | 0 | 0.25 | 0.16 | 1.4 | 1.4 | 0 | 0 | Mech (55%) | 40 | 7 (77%) | 0 |
GSHP D | 6.9 | 378.3 | 47.0 | 0 | 0.25 | 0.1 | 1.4 | 1.4 | 0 | 10 | Mech (55%) + VAV | 40 | 6 (70%) | 0 |
GSHP B | 4.9 | 527.3 | 33.2 | 0 | 0.08 | 0.07 | 1.4 | 0.6 | 10 | 9 | Mech (75%) + VAV | 40 | 7 (117%) | 0 |
SH4 | Emissions | LCC | Electricity Demand | DH / Boiler Demand | U-Values (W/m2K) | ST Cap | PV Cap | Ventilation Type | Distribution Temperature | GSHP Capacity | AAHP Capacity | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution | kg-CO2/m2/a | €/m2/25a | kWh/m2 | kWh/m2 | Walls | Roof | Doors | Windows | m2 | kWp | - | °C | kWth | kWth |
DH Ref | 22.7 | 348.0 | 26.8 | 115.8 | 0.17 | 0.09 | 1 | 1 | 0 | 0 | Mech (65%) | 40 | 0 | 0 |
DH D | 17.1 | 347.1 | 31.6 | 77.6 | 0.17 | 0.09 | 1 | 1 | 4 | 0 | Mech (65%) + VAV | 40 | 0 | 1 |
DH B | 10.8 | 469.4 | 23.6 | 45.2 | 0.07 | 0.07 | 0.8 | 1 | 18 | 7 | Mech (75%) + VAV | 40 | 0 | 4 |
Oil Ref | 30.4 | 475.8 | 26.8 | 115.8 | 0.17 | 0.09 | 1 | 1 | 0 | 0 | Mech (65%) | 40 | 0 | 0 |
Wood Ref | 46.7 | 364.5 | 26.8 | 115.8 | 0.17 | 0.09 | 1 | 1 | 0 | 0 | Mech (65%) | 40 | 0 | 0 |
Wood D | 35.7 | 368.5 | 31.6 | 77.6 | 0.17 | 0.09 | 1 | 1 | 4 | 0 | Mech (65%) + VAV | 40 | 0 | 1 |
Wood B | 21.8 | 495.5 | 23.5 | 45.8 | 0.07 | 0.06 | 0.8 | 1 | 20 | 7 | Mech (65%) + VAV | 40 | 0 | 5 |
Elec Ref | 20.4 | 538.8 | 142.6 | 0 | 0.17 | 0.09 | 1 | 1 | 0 | 0 | Mech (65%) | - | 0 | 0 |
Elec D | 12.2 | 457.1 | 82.0 | 0 | 0.17 | 0.07 | 1 | 1 | 6 | 9 | Mech (65%) + VAV | - | 0 | 3 |
Elec B | 9.4 | 561.3 | 62.8 | 0 | 0.08 | 0.06 | 1 | 0.6 | 14 | 7 | Mech (75%) + VAV | - | 0 | 5 |
GSHP Ref | 8.0 | 291.7 | 57.2 | 0 | 0.17 | 0.09 | 1 | 1 | 0 | 0 | Mech (65%) | 40 | 6 (83%) | 0 |
GSHP D | 6.3 | 344.0 | 43.4 | 0 | 0.17 | 0.09 | 1 | 1 | 0 | 10 | Mech (65%) | 40 | 5 (69%) | 0 |
GSHP B | 4.7 | 513.6 | 32.1 | 0 | 0.08 | 0.07 | 1 | 1 | 20 | 7 | Mech (75%) + VAV | 40 | 14 (226%) | 0 |
Case | January, Electric Power (W/m2) | July, Electric Power (W/m2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Max | Top 5% | Median | Bottom 5% | Min | Max | Top 5% | Median | Bottom 5% | Min | ||
SH1 | DH Ref | 6.5 | 6.2 | 3.1 | 2.3 | 2.3 | 4.2 | 3.9 | 1.3 | 0.7 | 0.7 |
DH D | 9.7 | 9.1 | 6.1 | 5.3 | 4.7 | 4.2 | 3.9 | 1.3 | 0.8 | 0.7 | |
DH B | 11.2 | 9.7 | 6.4 | −5.7 | −29.6 | 3.8 | 3.0 | −1.3 | −32.8 | −35.5 | |
Elec Ref | 75.3 | 70.1 | 41.4 | 30.7 | 26.8 | 19.3 | 13.5 | 6.8 | 1.9 | 1.5 | |
Elec D | 56.0 | 50.1 | 23.7 | 6.3 | −36.5 | 9.4 | 6.3 | −0.7 | −42.2 | −45.7 | |
Elec B | 45.4 | 39.7 | 19.6 | 0.5 | −33.9 | 4.4 | 3.6 | −1.3 | −37.3 | −40.4 | |
GSHP Ref | 51.2 | 45.1 | 15.1 | 10.9 | 9.6 | 6.7 | 6.6 | 3.1 | 1.3 | 1.0 | |
GSHP D | 38.8 | 33.3 | 11.4 | −3.1 | −36.1 | 6.0 | 4.7 | −0.2 | −45.8 | −49.6 | |
GSHP B | 16.5 | 13.9 | 8.2 | −7.4 | −36.9 | 3.7 | 2.9 | −2.1 | −42.6 | −46.0 | |
Wood Ref | 6.5 | 6.2 | 3.1 | 2.3 | 2.3 | 4.2 | 3.9 | 1.3 | 0.7 | 0.7 | |
Wood D | 9.7 | 9.1 | 6.1 | 5.3 | 4.7 | 4.2 | 3.9 | 1.3 | 0.8 | 0.7 | |
Wood B | 13.9 | 11.0 | 5.7 | −2.8 | −20.4 | 3.9 | 3.1 | −0.5 | −23.1 | −25.0 | |
SH2 | DH Ref | 6.8 | 6.5 | 3.4 | 2.6 | 2.6 | 4.5 | 4.2 | 1.6 | 1.0 | 1.0 |
DH D | 11.5 | 10.1 | 7.1 | 5.6 | 5.0 | 4.5 | 4.2 | 1.6 | 1.1 | 1.0 | |
DH B | 13.5 | 10.7 | 5.9 | −6.1 | −29.3 | 4.1 | 3.3 | −1.0 | −32.5 | −35.2 | |
Elec Ref | 56.5 | 52.0 | 32.4 | 24.1 | 22.4 | 13.9 | 13.4 | 7.1 | 2.2 | 1.9 | |
Elec D | 43.3 | 39.0 | 23.3 | 8.0 | −26.5 | 9.6 | 6.5 | −0.1 | −32.5 | −35.2 | |
Elec B | 36.0 | 30.8 | 18.8 | −0.9 | −29.3 | 4.1 | 3.3 | −1.0 | −32.5 | −35.2 | |
GSHP Ref | 35.8 | 30.8 | 12.7 | 9.2 | 8.5 | 7.0 | 6.9 | 3.4 | 1.5 | 1.3 | |
GSHP D | 35.8 | 30.9 | 11.9 | −3.2 | −35.7 | 6.3 | 5.0 | 0.2 | −45.5 | −49.3 | |
GSHP B | 20.6 | 15.1 | 8.4 | −4.6 | −29.3 | 4.1 | 3.3 | −1.0 | −32.5 | −35.2 | |
Wood Ref | 6.8 | 6.5 | 3.4 | 2.6 | 2.6 | 4.5 | 4.2 | 1.6 | 1.0 | 1.0 | |
Wood D | 11.5 | 10.3 | 7.3 | 5.8 | 5.2 | 4.5 | 4.2 | 1.6 | 1.1 | 1.0 | |
Wood B | 13.7 | 10.9 | 6.0 | −2.9 | −20.0 | 4.2 | 3.4 | −0.2 | −22.8 | −24.7 | |
SH3 | DH Ref | 7.4 | 7.0 | 4.0 | 3.2 | 3.2 | 5.1 | 4.8 | 2.2 | 1.6 | 1.6 |
DH D | 8.9 | 8.5 | 5.3 | 4.2 | 4.1 | 5.0 | 4.7 | 1.9 | 1.3 | 1.2 | |
DH B | 12.5 | 10.0 | 5.6 | −6.4 | −29.3 | 4.4 | 3.6 | −0.8 | −32.5 | −35.2 | |
Elec Ref | 56.2 | 50.5 | 30.0 | 21.5 | 19.1 | 14.6 | 14.0 | 7.5 | 2.9 | 2.5 | |
Elec D | 45.4 | 39.2 | 21.1 | 3.2 | −36.5 | 9.5 | 5.6 | −1.0 | −42.1 | −45.6 | |
Elec B | 38.0 | 32.2 | 17.2 | −1.8 | −33.9 | 4.4 | 3.6 | −1.2 | −37.3 | −40.4 | |
GSHP Ref | 31.5 | 24.9 | 10.7 | 7.7 | 7.1 | 7.6 | 7.5 | 3.9 | 2.1 | 1.9 | |
GSHP D | 32.5 | 25.8 | 9.5 | −5.9 | −37.1 | 6.8 | 5.5 | 0.3 | −45.4 | −49.2 | |
GSHP B | 16.4 | 13.4 | 7.7 | −8.2 | −38.2 | 4.3 | 3.6 | −1.6 | −42.2 | −45.7 | |
Wood Ref | 7.4 | 7.0 | 4.0 | 3.2 | 3.2 | 5.1 | 4.8 | 2.2 | 1.6 | 1.6 | |
Wood D | 8.9 | 8.5 | 5.3 | 4.2 | 4.1 | 5.0 | 4.7 | 1.9 | 1.3 | 1.2 | |
Wood B | 12.0 | 9.6 | 5.5 | 1.5 | -6.1 | 4.7 | 4.2 | 1.3 | −8.2 | −8.9 | |
SH4 | DH Ref | 7.2 | 6.9 | 3.8 | 3.0 | 3.0 | 4.9 | 4.7 | 2.0 | 1.5 | 1.4 |
DH D | 8.8 | 8.3 | 5.1 | 4.1 | 3.4 | 4.8 | 4.6 | 1.8 | 1.2 | 1.2 | |
DH B | 11.9 | 9.5 | 5.3 | −6.8 | −29.2 | 4.4 | 3.6 | −0.8 | −32.5 | −35.2 | |
Elec Ref | 50.8 | 45.1 | 25.7 | 17.5 | 15.8 | 14.3 | 13.8 | 7.3 | 2.5 | 2.2 | |
Elec D | 41.5 | 35.5 | 18.3 | 0.7 | −36.6 | 9.4 | 5.2 | −1.1 | −42.2 | −45.7 | |
Elec B | 37.0 | 30.4 | 15.9 | −1.5 | −29.2 | 4.4 | 3.6 | −0.9 | −32.5 | −35.2 | |
GSHP Ref | 26.0 | 20.0 | 9.2 | 6.5 | 5.9 | 7.4 | 7.4 | 3.7 | 1.9 | 1.8 | |
GSHP D | 30.3 | 24.2 | 8.9 | −5.8 | −37.3 | 6.7 | 5.4 | 0.5 | −45.1 | −48.9 | |
GSHP B | 16.6 | 13.5 | 7.7 | −5.6 | −29.3 | 4.4 | 3.6 | −0.9 | −32.5 | −35.2 | |
Wood Ref | 7.2 | 6.9 | 3.8 | 3.0 | 3.0 | 4.9 | 4.7 | 2.0 | 1.5 | 1.4 | |
Wood D | 8.8 | 8.3 | 5.1 | 4.1 | 3.4 | 4.8 | 4.6 | 1.8 | 1.2 | 1.2 | |
Wood B | 12.2 | 9.5 | 5.3 | −6.9 | −29.3 | 4.4 | 3.6 | −0.9 | −32.5 | −35.2 | |
Building stock | Original | 26.4 | 23.4 | 13.8 | 10.4 | 9.3 | 6.9 | 6.8 | 3.4 | 1.5 | 1.3 |
Retrofit D | 31.3 | 27.5 | 13.8 | 5.4 | −14.0 | 6.7 | 5.0 | 1.2 | −20.3 | −22.0 | |
Retrofit B | 26.4 | 22.2 | 11.6 | −1.0 | −24.1 | 5.0 | 4.0 | −0.3 | −29.3 | −31.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirvonen, J.; Jokisalo, J.; Kosonen, R. The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses. Energies 2020, 13, 1773. https://doi.org/10.3390/en13071773
Hirvonen J, Jokisalo J, Kosonen R. The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses. Energies. 2020; 13(7):1773. https://doi.org/10.3390/en13071773
Chicago/Turabian StyleHirvonen, Janne, Juha Jokisalo, and Risto Kosonen. 2020. "The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses" Energies 13, no. 7: 1773. https://doi.org/10.3390/en13071773
APA StyleHirvonen, J., Jokisalo, J., & Kosonen, R. (2020). The Effect of Deep Energy Retrofit on The Hourly Power Demand of Finnish Detached Houses. Energies, 13(7), 1773. https://doi.org/10.3390/en13071773