# An Integrated Energy Simulation Model for Buildings

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology and Modeling Approaches

#### 2.1. The Energy Simulation Model: General Presentation of the Model, Areas of Application, Advantages, and Shortcomings

- ${q}_{\alpha sol}^{\u2033}$ is the absorbed direct and diffuse solar (short wavelength) radiation and heat flux
- ${q}_{LWR}^{\u2033}$ is the net long wavelength (thermal) radiation flux exchange with the air and surroundings
- ${q}_{conv}^{\u2033}$ is the convective flux exchange with the outside air
- ${q}_{ko}^{\u2033}$ is the conduction heat flux (q/A) into the wall

- $\u03f5$ is the long-wave emittance of the surface
- $\sigma $ is the Stefan–Boltzmann constant
- ${F}_{gnd}$ is the view factor of wall surface to ground surface temperature
- ${F}_{sky}$ is the view factor of wall surface to sky temperature
- ${F}_{air}$ is the view factor of wall surface to air temperature
- ${T}_{surf}$ is the outside surface temperature
- ${T}_{gnd}$ is the ground surface temperature
- ${T}_{sky}$ is the sky temperature
- ${T}_{air}$ is the air temperature

- ${q}_{conv}^{\u2033}$ is the rate of exterior convective heat transfer
- ${h}_{c,ext}$ is the exterior convection coefficient
- A is the surface area
- ${T}_{surf}$ is the surface temperature
- ${T}_{a}ir$ is the outdoor air temperature

- ${q}_{ko}^{\u2033}(t)$ is the conductive heat flux for the current time step
- T is temperature
- i indicates the internal element of the building
- o indicates the external element of the building
- X,Y are the response factors

- ${X}_{j}$ is the outside CTF coefficient, j = 0,1,...nz
- ${Y}_{j}$ is the cross CTF coefficient, j = 0,1,...nz
- ${Z}_{j}$ is the inside CTF coefficient, j = 0,1,...nz
- ${\varphi}_{j}$ is the flux CTF coefficient, j = 0,1,...nq
- ${T}_{i}$ is the inside surface temperature
- ${T}_{o}$ is the outside surface temperature
- ${q}_{ko}^{\u2033}$ is the conduction heat flux on the outside face
- ${q}_{ki}^{\u2033}$ is the conduction heat flux on the inside face

- ${\sum}_{i=1}^{{N}_{sl}}{\dot{Q}}_{i}$ is the sum of convective heat transfer from the zone surfaces
- ${\sum}_{i=1}^{{N}_{surfaces}}{h}_{i}{A}_{i}({T}_{si}-{T}_{z})$ is the convective heat transfer from the zone surfaces
- ${\dot{m}}_{inf}{C}_{p}({T}_{zi}-{T}_{z})$ is the heat transfer due to infiltration of outside air
- ${\sum}_{i=1}^{{N}_{surfaces}}{\dot{m}}_{i}{C}_{p}({T}_{zi}-{T}_{z})$ is the heat transfer due to interzone air mixing
- ${\dot{Q}}_{sys}$ is the air systems output
- ${C}_{z}\frac{d{T}_{z}}{dt}$ is the energy stored in zone air, and
- ${C}_{z}={\rho}_{air}{C}_{p}{C}_{T}$

- ${I}_{design}$ is the user defined infiltration value (ACH${}^{-1}$)
- ${T}_{zone}$ is the zone air temperature at current conditions (deg C)
- ${T}_{odb}$ is the outdoor air dry-bulb temperature (deg C)
- ${F}_{schedule}$ is a user defined schedule value between 0 and 1
- A is the constant term coefficient
- B is the temperature term coefficient
- C is the velocity term coefficient
- D is the velocity squared coefficient

- ${V}_{design}$ is the user defined ventilation value (ACH${}^{-1}$)
- ${T}_{zone}$ is the zone air temperature at current conditions (deg C)
- ${T}_{odb}$ is the outdoor air dry-bulb temperature (deg C)
- ${F}_{schedule}$ is a user defined schedule value between 0 and 1
- A is the constant term coefficient
- B is the temperature term coefficient
- C is the velocity term coefficient
- D is the velocity squared coefficient

#### 2.2. Shape Modeling and Systematic Inefficiencies Correction of the Prediction Model: Presentation of the Properties and Capabilities of the Shape Invariant Model and Implementation in the Current Study

#### 2.2.1. The Shape Model Approach

**Initial**

**Step**

**Step**

**1**

**Step**

**2**

**Step**

**3**

#### 2.2.2. The Weighted Shape Model Approach

#### 2.3. Postprocessing Using Kalman Filtering: The General Algorithm, Capabilities and Areas of Application, and the Filter Proposed for the Present Work

## 3. Test Cases and Results

- Prediction Bias, $Bias=\frac{1}{T}{\sum}_{t=1}^{T}({X}_{t}-{\widehat{X}}_{t})$, indicating any systematic underestimation or overestimation of the quantity of interest.
- Mean Absolute Error, $MAE=\frac{1}{T}{\sum}_{t=1}^{T}|{X}_{t}-{\widehat{X}}_{t}|$, indicating the mean absolute deviance of the model predictions from the true value.
- Root Mean Squared Error, $RMSE=\sqrt{\frac{1}{T}{\sum}_{t=1}^{T}{({X}_{t}-{\widehat{X}}_{t})}^{2}}$, indicating the mean squared deviance of the model predictions from the true value.
- Nash–Sutcliffe model efficiency coefficient, which is used to assess the predictive power of the model:$$NSE=1-\frac{{\sum}_{t=1}^{T}{({X}_{t}-{\widehat{X}}_{t})}^{2}}{{\sum}_{t=1}^{T}{({X}_{t}-{\tilde{X}}_{t})}^{2}},$$

#### 3.1. Indicative Analysis of the Initial Simulation Results: Revealing the Weak Points

#### 3.2. Diagnostic Results for the Complete Model Outputs

#### 3.2.1. Evaluating Intra-Day Energy Demand Predictions

#### 3.2.2. Evaluating Daily Summaries Energy Demand Predictions

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- International Energy Agency. Available online: https://www.iea.org/topics/energy-efficiency/buildings/ (accessed on 18 September 2019).
- Athienitis, A.K.; O’Brien, W. Modeling, Design, and Optimization of Net-Zero Energy Buildings; Wiley Online Library: Hoboken, NJ, USA, 2015. [Google Scholar]
- Zhao, H.x.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev.
**2012**, 16, 3586–3592. [Google Scholar] [CrossRef] - Santamouris, M. Advances in Building Energy Research; Taylor & Francis: Hoboken, NJ, USA, 2010; Volume 4. [Google Scholar]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modeling and energy performances prediction: A review. Renew. Sustain. Energy Rev.
**2013**, 23, 272–288. [Google Scholar] [CrossRef] [Green Version] - SPARK 2.0 REFERENCE MANUAL Simulation Problem Analysis and Research Kernel. Available online: https://simulationresearch.lbl.gov/VS201/doc/SPARKreferenceManual.pdf (accessed on 11 November 2019).
- Harish, V.; Kumar, A. A review on modeling and simulation of building energy systems. Renew. Sustain. Energy Rev.
**2016**, 56, 1272–1292. [Google Scholar] [CrossRef] - Naji, S.; Keivani, A.; Shamshirband, S.; Alengaram, U.J.; Jumaat, M.Z.; Mansor, Z.; Lee, M. Estimating building energy consumption using extreme learning machine method. Energy
**2016**, 97, 506–516. [Google Scholar] [CrossRef] - Robinson, C.; Dilkina, B.; Hubbs, J.; Zhang, W.; Guhathakurta, S.; Brown, M.A.; Pendyala, R.M. Machine learning approaches for estimating commercial building energy consumption. Appl. Energy
**2017**, 208, 889–904. [Google Scholar] [CrossRef] - Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev.
**2018**, 81, 1192–1205. [Google Scholar] [CrossRef] - Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Han, M.; Zhao, X. A review of data-driven approaches for prediction and classification of building energy consumption. Renew. Sustain. Energy Rev.
**2018**, 82, 1027–1047. [Google Scholar] [CrossRef] - De Wit, S.; Augenbroe, G. Analysis of uncertainty in building design evaluations and its implications. Energy Build.
**2002**, 34, 951–958. [Google Scholar] [CrossRef] - Ryan, E.M.; Sanquist, T.F. Validation of building energy modeling tools under idealized and realistic conditions. Energy Build.
**2012**, 47, 375–382. [Google Scholar] [CrossRef] - Maile, T.; Bazjanac, V.; Fischer, M. A method to compare simulated and measured data to assess building energy performance. Build. Environ.
**2012**, 56, 241–251. [Google Scholar] [CrossRef] - Coakley, D.; Raftery, P.; Keane, M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev.
**2014**, 37, 123–141. [Google Scholar] [CrossRef] [Green Version] - M & V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4.0. Available online: https://www.energy.gov/sites/prod/files/2016/01/f28/mv_guide_4_0.pdf (accessed on 12 August 2019).
- Royapoor, M.; Roskilly, T. Building model calibration using energy and environmental data. Energy Build.
**2015**, 94, 109–120. [Google Scholar] [CrossRef] [Green Version] - O’Neill, Z.D.; Bailey, T.G.; Eisenhower, B.A.; Fonoberov, V.A. Calibration of a building energy model considering parametric uncertainty. ASHRAE Trans.
**2012**, 118, 189–196. [Google Scholar] - O’Neill, Z.D.; Eisenhower, B.A.; Bailey, T.G.; Narayanan, S.; Fonoberov, V.A. Modeling and calibration of energy models for a DoD building. ASHRAE Trans.
**2011**, 117, 358–365. [Google Scholar] - EnergyPlus
^{TM}, Engineering Reference Documentation Version 9.1.0, National Renewable Energy Laboratory. 2019. Available online: https://energyplus.net (accessed on 12 August 2019). - Brackney, L.; Parker, A.; Macumber, D.; Benne, K. Building Energy Modeling with OpenStudio; Springer: Berlin, Germany, 2018. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis: Methods and Case Studies; Springer: New York, NY, USA, 2007. [Google Scholar]
- Gu, C. Smoothing Spline ANOVA Models; Springer Science & Business Media: Berlin, Germany, 2013; Volume 297. [Google Scholar]
- Lawton, W.; Sylvestre, E.; Maggio, M. Self modeling nonlinear regression. Technometrics
**1972**, 14, 513–532. [Google Scholar] [CrossRef] - Kneip, A.; Engel, J. Model estimation in nonlinear regression under shape invariance. Annals Stat.
**1995**, 23, 551–570. [Google Scholar] [CrossRef] - Gervini, D.; Gasser, T. Self-modeling warping functions. J. R. Stat. Soc. Ser. B (Statistical Methodol.)
**2004**, 66, 959–971. [Google Scholar] [CrossRef] - Papayiannis, G.I.; Giakoumakis, E.A.; Manios, E.D.; Moulopoulos, S.D.; Stamatelopoulos, K.S.; Toumanidis, S.T.; Zakopoulos, N.A.; Yannacopoulos, A.N. A functional supervised learning approach to the study of blood pressure data. Stat. Med.
**2018**, 37, 1359–1375. [Google Scholar] [CrossRef] - Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. De L’institut Henri Poincaré
**1948**, 10, 215–310. [Google Scholar] - Izem, R.; Marron, J.S. Analysis of nonlinear modes of variation for functional data. Electron. J. Stat.
**2007**, 1, 641–676. [Google Scholar] [CrossRef] - Bigot, J.; Charlier, B. On the consistency of Fréchet means in deformable models for curve and image analysis. Electron. J. Stat.
**2011**, 5, 1054–1089. [Google Scholar] [CrossRef] [Green Version] - Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng.
**1960**, 82, 34–45. [Google Scholar] [CrossRef] [Green Version] - Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng.
**1961**, 83, 95–108. [Google Scholar] [CrossRef] - Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Crochet, P. Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteorol. Appl.
**2004**, 11, 173–187. [Google Scholar] [CrossRef] [Green Version] - Galanis, G.; Anadranistakis, M. A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorol. Appl.
**2002**, 9, 437–441. [Google Scholar] [CrossRef] [Green Version] - Emmanouil, G.; Galanis, G.; Kallos, G. Statistical methods for the prediction of night-time cooling and minimum temperature. Meteorol. Appl.
**2006**, 13, 169–178. [Google Scholar] [CrossRef] [Green Version] - Galanis, G.; Louka, P.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann. Geophys.
**2006**, 24, 2451–2460. [Google Scholar] [CrossRef] [Green Version] - Hua, S.; Wang, S.; Jin, S.; Feng, S.; Wang, B. Wind speed optimisation method of numerical prediction for wind farm based on Kalman filter method. J. Eng.
**2017**, 2017, 1146–1149. [Google Scholar] [CrossRef] - Emmanouil, G.; Galanis, G.; Kallos, G. Combination of statistical Kalman filters and data assimilation for improving ocean waves analysis and forecasting. Ocean Model.
**2012**, 59, 11–23. [Google Scholar] [CrossRef] - Galanis, G.; Emmanouil, G.; Chu, P.C.; Kallos, G. A new methodology for the extension of the impact of data assimilation on ocean wave prediction. Ocean Dyn.
**2009**, 59, 523–535. [Google Scholar] [CrossRef] [Green Version] - Galanis, G.; Chu, P.C.; Kallos, G. Statistical post processes for the improvement of the results of numerical wave prediction models. A combination of Kolmogorov-Zurbenko and Kalman filters. J. Oper. Oceanogr.
**2011**, 4, 23–31. [Google Scholar] [CrossRef] [Green Version] - Patlakas, P.; Drakaki, E.; Galanis, G.; Spyrou, C.; Kallos, G. Wind gust estimation by combining a numerical weather prediction model and statistical postprocessing. Energy Procedia
**2017**, 125, 190–198. [Google Scholar] [CrossRef] - Samalot, A.; Astitha, M.; Yang, J.; Galanis, G. Combined kalman filter and universal kriging to improve storm wind speed predictions for the northeastern United States. Weather Forecast.
**2019**, 34, 587–601. [Google Scholar] [CrossRef] - Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I.; Kallos, G. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn.
**2008**, 96, 2348–2362. [Google Scholar] [CrossRef] [Green Version] - Pelland, S.; Galanis, G.; Kallos, G. Solar and photovoltaic forecasting through postprocessing of the Global Environmental Multiscale numerical weather prediction model. Prog. Photovoltaics: Res. Appl.
**2013**, 21, 284–296. [Google Scholar] [CrossRef] - Stathopoulos, C.; Kaperoni, A.; Galanis, G.; Kallos, G. Wind power prediction based on numerical and statistical models. J. Wind Eng. Ind. Aerodyn.
**2013**, 112, 25–38. [Google Scholar] [CrossRef] - MyLeaf Platform - Loccioni Group. Available online: https://https://myleaf2.loccioni.com (accessed on 26 July 2018).
- Provata, E.; Kolokotsa, D.; Papantoniou, S.; Pietrini, M.; Giovannelli, A.; Romiti, G. Development of optimization algorithms for the Leaf Community microgrid. Renew. Energy
**2015**, 74, 782–795. [Google Scholar] [CrossRef] - Kampelis, N.; Gobakis, K.; Vagias, V.; Kolokotsa, D.; Standardi, L.; Isidori, D.; Cristalli, C.; Montagnino, F.; Paredes, F.; Muratore, P.; et al. Evaluation of the performance gap in industrial, residential & tertiary near-Zero energy buildings. Energy Build.
**2017**, 148, 58–73. [Google Scholar]

**Figure 2.**Example of the observed and simulated daily energy demand (per hour) and the corresponding reshape functions for the time period 22/01/2018 to 26/01/2018.

**Figure 5.**Measured total HVAC electrical energy consumption for the year 2017 versus: (

**a**) initial model (baseline) (

**left plot**) and (

**b**) parameterized model (optimized) (

**right plot**).

**Figure 6.**Measured total HVAC electrical energy consumption for the year 2018 versus: (

**a**) initial model (baseline) (

**left plot**) and (

**b**) parameterized model (optimized) (

**right plot**).

**Figure 8.**Statistical error indices for the energy prediction through the simulation model (SM) and the optimized simulation model (OSM) for the year 2017 (per month).

**Figure 9.**Statistical error indices for the energy prediction through the simulation model (SM) and the optimized simulation model (OSM) for the year 2018 (per month).

**Figure 10.**Statistical error indices for the Reshaped Simulation Model (RS) and the Weighted Reshaped Simulation Model (w-RS) for the year 2017 (per month).

**Figure 11.**Statistical error indices for the Reshaped Simulation Model (RS) and the Weighted Reshaped Simulation Model (w-RS) for the year 2018 (per month).

**Figure 12.**Prediction of the daily energy demand (summary) obtained by optimized simulation model (OSM) and Kalman filter-enhanced reshaped simulation model (KF-RS) for the year 2017.

**Figure 13.**Prediction of the daily energy demand (summary) obtained by optimized simulation model (OSM) and Kalman filter-enhanced reshaped simulation model (KF-RS) for the year 2018.

**Table 1.**Monthly measured HVAC electrical energy consumption values and the corresponding simulated ones obtained from the baseline and optimized models for 2017.

2017 | Simulated - Baseline Model (MWh) | Simulated - Optimized Model (MWh) | Measured (MWh) |
---|---|---|---|

Jan | 31.55 | 27.79 | 25.72 |

Feb | 10.26 | 19.27 | 19.61 |

Mar | 11.09 | 15.76 | 17.55 |

Apr | 6.79 | 8.92 | 9.64 |

May | 2.90 | 15.40 | 16.02 |

Jun | 21.97 | 27.10 | 26.34 |

Jul | 20.02 | 23.69 | 25.55 |

Aug | 27.19 | 30.31 | 27.27 |

Sep | 6.39 | 13.15 | 18.87 |

Oct | 7.62 | 10.56 | 14.00 |

Nov | 17.05 | 14.38 | 15.86 |

Dec | 17.70 | 15.62 | 16.24 |

**Table 2.**Monthly measured HVAC electrical energy consumption values and the corresponding simulated ones obtained from the baseline and optimized models for 2018.

2018 | Simulated - Baseline Model (MWh) | Simulated - Optimized Model (MWh) | Measured (MWh) |
---|---|---|---|

Jan | 22.60 | 27.29 | 23.02 |

Feb | 21.42 | 22.52 | 22.49 |

Mar | 20.29 | 21.07 | 20.40 |

Apr | 5.92 | 8.76 | 13.85 |

May | 3.27 | 11.76 | 17.01 |

Jun | 17.65 | 22.30 | 24.09 |

Jul | 29.32 | 29.45 | 30.90 |

Aug | 30.94 | 34.56 | 34.16 |

Sep | 9.92 | 18.99 | 20.13 |

Oct | 6.88 | 10.06 | 10.11 |

Nov | 14.29 | 18.80 | 15.75 |

Dec | 17.96 | 18.46 | 18.14 |

**Table 3.**Model diagnostic results for intra-day energy demand predictions (hourly) for the years 2017 and 2018.

Model | Bias | MAE | RMSE | NSE | Bias | MAE | RMSE | NSE |
---|---|---|---|---|---|---|---|---|

2017 | 2018 | |||||||

SM | −8.67 | 21.32 | 31.66 | 0.00 | −7.67 | 22.66 | 35.56 | 0.00 |

OSM | −1.79 | 19.39 | 28.80 | 0.17 | −0.63 | 21.77 | 32.58 | 0.16 |

RS | −0.14 | 12.92 | 20.46 | 0.58 | −0.25 | 12.91 | 22.01 | 0.62 |

w−RS | −0.51 | 9.91 | 17.03 | 0.71 | −0.18 | 9.58 | 17.65 | 0.75 |

KF−RS | 0.20 | 11.33 | 17.60 | 0.70 | −0.36 | 12.67 | 18.73 | 0.73 |

**Table 4.**Model diagnostic results for the predictions on the daily energy demand (summaries) for the years 2017 and 2018.

Model | Bias | MAE | RMSE | NSE | Bias | MAE | RMSE | NSE |
---|---|---|---|---|---|---|---|---|

2017 | 2018 | |||||||

SM | −195.00 | 344.65 | 423.71 | 0.00 | −182.59 | 306.54 | 413.80 | 0.00 |

OSM | −37.54 | 237.38 | 304.32 | 0.30 | −12.80 | 232.49 | 328.62 | 0.30 |

RS | −1.90 | 192.54 | 272.03 | 0.44 | −6.09 | 194.10 | 295.32 | 0.32 |

w−RS | −11.18 | 144.97 | 226.93 | 0.61 | −4.39 | 139.18 | 238.78 | 0.50 |

KF−RS | −0.73 | 143.46 | 207.51 | 0.66 | −1.70 | 155.74 | 247.69 | 0.51 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kampelis, N.; Papayiannis, G.I.; Kolokotsa, D.; Galanis, G.N.; Isidori, D.; Cristalli, C.; Yannacopoulos, A.N.
An Integrated Energy Simulation Model for Buildings. *Energies* **2020**, *13*, 1170.
https://doi.org/10.3390/en13051170

**AMA Style**

Kampelis N, Papayiannis GI, Kolokotsa D, Galanis GN, Isidori D, Cristalli C, Yannacopoulos AN.
An Integrated Energy Simulation Model for Buildings. *Energies*. 2020; 13(5):1170.
https://doi.org/10.3390/en13051170

**Chicago/Turabian Style**

Kampelis, Nikolaos, Georgios I. Papayiannis, Dionysia Kolokotsa, Georgios N. Galanis, Daniela Isidori, Cristina Cristalli, and Athanasios N. Yannacopoulos.
2020. "An Integrated Energy Simulation Model for Buildings" *Energies* 13, no. 5: 1170.
https://doi.org/10.3390/en13051170