Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction
Abstract
1. Introduction
2. The Proposed Method
2.1. Feature Selection
2.2. The XGBoost Model of SOH Estimation
2.3. Markov Chain Correction
2.4. The Implementation of the MC-XGBoost Method
Algorithm 1 The implementation of the MC-XGBoost Algorithms | |
1: | Input: Dataset X = [], i 1, 2, …, n}, the loss function: , the total number of sub-tree: T |
2: | Output: Predicted health status of lithium-ion batteries: ; |
3: | Repeat |
4: | Initialize the t-th tree |
5: | Compute |
6: | Compute |
7: | Use the statistics to greedily grow a new tree : , among them, |
8: | Add the best tree into the current model |
9: | Until all T sub-trees are processed |
10: | A strong regression tree based on all weak regression subtrees |
11: | Compute the based on the strong regression tree |
12: | Repeat |
13: | Normalize the relative estimations: ; determine the status: ; calculate the transition matrix: P; correct the prediction results by Markov Chain: |
14 | Output based on Markov Chain |
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paul, N.; Wandt, J.; Seidlmayer, S.; Schebesta, S.; Mühlbauer, M.J.; Dolotko, O. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction. J. Power Sources 2017, 345, 85–96. [Google Scholar] [CrossRef]
- Weng, C.; Feng, X.; Sun, J.; Peng, H. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking. Appl. Energy 2016, 180, 360–368. [Google Scholar] [CrossRef]
- Weng, C.; Feng, X.; Sun, J.; Ouyang, M.; Peng, H. Battery SOH Management Research. In Proceedings of the 4th IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (ECOSM 2015), Ohio State University, Columbus, OH, USA, 23–26 August 2015; Volume 48. [Google Scholar]
- Moura, S.J.; Krstic, M.; Chaturvedi, N.A. Adaptive PDE observer for battery SOC/SOH estimation. In Proceedings of the ASME 5th Annual Dynamic Systems and Control Conference Joint with the JSME 11th Motion and Vibration Conference (DSCC2012-MOVIC2012), Fort Lauderdale, FL, USA, 2012; pp. 101–110. [Google Scholar]
- Ramadass, P.; Haran, B.; White, R.; Popov, B.N. Mathematical modeling of the capacity fade of Li-ion cells. J. Power Sources 2003, 123, 230–240. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.Y.; Liu, Y. Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef]
- Sánchez, L.; Couso, I.; González, M. A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4 batteries. Appl. Soft Comput. 2014, 14, 269–288. [Google Scholar] [CrossRef]
- Hoenig, S.; Singh, H.; Palanisamy, T.G.; Eagan, M. Method and Apparatus for Predicting the Available Energy of a Battery. U.S. Patent 6,618,681, 9 September 2003. [Google Scholar]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Fu, Y.; Xu, J.; Gong, X. Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications. J. Power Sources 2013, 240, 184–192. [Google Scholar] [CrossRef]
- Widodo, A.; Shim, M.-C.; Caesarendra, W.; Yang, B.-S. Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [Google Scholar] [CrossRef]
- Patil, M.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S.-G. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sources 2014, 270, 262–272. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 2016, 65, 265–273. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Yang, S.; Wu, J.; Du, Y.; He, Y.; Chen, X. Ensemble learning for short-term traffic prediction based on gradient boosting machine. J. Sens. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. NASA Ames Prognostics Data Repository: Battery Data Set [DS/OL]; NASA Ames Research Center: Santa Clara County, CA, USA, 2007. Available online: http://ti.arc.nasa.gov/project/pRognostic-data-repository (accessed on 10 September 2017).
MAE | Battery #6 RMSE | Maximum Error | MAE | Battery #7 RMSE | Maximum Error | |
---|---|---|---|---|---|---|
XGBoost | 0.001615 | 0.002132 | 0.005972 | 0.001336 | 0.001712 | 0.004244 |
Random Forest (RF) | 0.004379 | 0.006947 | 0.028183 | 0.002716 | 0.006108 | 0.059234 |
KNN | 0.016193 | 0.020937 | 0.061488 | 0.005732 | 0.008387 | 0.027463 |
Linear Regression (LR) | 0.020204 | 0.028393 | 0.092293 | 0.016584 | 0.025346 | 0.088665 |
SVM | 0.045509 | 0.056715 | 0.118535 | 0.053396 | 0.060812 | 0.099835 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Fei, C.; Xia, H. Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies 2020, 13, 812. https://doi.org/10.3390/en13040812
Song S, Fei C, Xia H. Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies. 2020; 13(4):812. https://doi.org/10.3390/en13040812
Chicago/Turabian StyleSong, Shuxiang, Chen Fei, and Haiying Xia. 2020. "Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction" Energies 13, no. 4: 812. https://doi.org/10.3390/en13040812
APA StyleSong, S., Fei, C., & Xia, H. (2020). Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies, 13(4), 812. https://doi.org/10.3390/en13040812