Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction
Abstract
:1. Introduction
2. The Proposed Method
2.1. Feature Selection
2.2. The XGBoost Model of SOH Estimation
2.3. Markov Chain Correction
2.4. The Implementation of the MC-XGBoost Method
Algorithm 1 The implementation of the MC-XGBoost Algorithms | |
1: | Input: Dataset X = [], i 1, 2, …, n}, the loss function: , the total number of sub-tree: T |
2: | Output: Predicted health status of lithium-ion batteries: ; |
3: | Repeat |
4: | Initialize the t-th tree |
5: | Compute |
6: | Compute |
7: | Use the statistics to greedily grow a new tree : , among them, |
8: | Add the best tree into the current model |
9: | Until all T sub-trees are processed |
10: | A strong regression tree based on all weak regression subtrees |
11: | Compute the based on the strong regression tree |
12: | Repeat |
13: | Normalize the relative estimations: ; determine the status: ; calculate the transition matrix: P; correct the prediction results by Markov Chain: |
14 | Output based on Markov Chain |
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paul, N.; Wandt, J.; Seidlmayer, S.; Schebesta, S.; Mühlbauer, M.J.; Dolotko, O. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction. J. Power Sources 2017, 345, 85–96. [Google Scholar] [CrossRef]
- Weng, C.; Feng, X.; Sun, J.; Peng, H. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking. Appl. Energy 2016, 180, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Weng, C.; Feng, X.; Sun, J.; Ouyang, M.; Peng, H. Battery SOH Management Research. In Proceedings of the 4th IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling (ECOSM 2015), Ohio State University, Columbus, OH, USA, 23–26 August 2015; Volume 48. [Google Scholar]
- Moura, S.J.; Krstic, M.; Chaturvedi, N.A. Adaptive PDE observer for battery SOC/SOH estimation. In Proceedings of the ASME 5th Annual Dynamic Systems and Control Conference Joint with the JSME 11th Motion and Vibration Conference (DSCC2012-MOVIC2012), Fort Lauderdale, FL, USA, 2012; pp. 101–110. [Google Scholar]
- Ramadass, P.; Haran, B.; White, R.; Popov, B.N. Mathematical modeling of the capacity fade of Li-ion cells. J. Power Sources 2003, 123, 230–240. [Google Scholar] [CrossRef]
- Ng, K.S.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 2009, 86, 1506–1511. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, J. A review on prognostics and health monitoring of Li-ion battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.Y.; Liu, Y. Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, L.; Couso, I.; González, M. A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4 batteries. Appl. Soft Comput. 2014, 14, 269–288. [Google Scholar] [CrossRef]
- Hoenig, S.; Singh, H.; Palanisamy, T.G.; Eagan, M. Method and Apparatus for Predicting the Available Energy of a Battery. U.S. Patent 6,618,681, 9 September 2003. [Google Scholar]
- Liu, D.; Pang, J.; Zhou, J.; Peng, Y.; Pecht, M. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 2013, 53, 832–839. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, C.C.; Fu, Y.; Xu, J.; Gong, X. Online battery state of health estimation based on Genetic Algorithm for electric and hybrid vehicle applications. J. Power Sources 2013, 240, 184–192. [Google Scholar] [CrossRef]
- Widodo, A.; Shim, M.-C.; Caesarendra, W.; Yang, B.-S. Intelligent prognostics for battery health monitoring based on sample entropy. Expert Syst. Appl. 2011, 38, 11763–11769. [Google Scholar] [CrossRef]
- Patil, M.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S.-G. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. J. Power Sources 2014, 270, 262–272. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model. Microelectron. Reliab. 2016, 65, 265–273. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Yang, S.; Wu, J.; Du, Y.; He, Y.; Chen, X. Ensemble learning for short-term traffic prediction based on gradient boosting machine. J. Sens. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K. NASA Ames Prognostics Data Repository: Battery Data Set [DS/OL]; NASA Ames Research Center: Santa Clara County, CA, USA, 2007. Available online: http://ti.arc.nasa.gov/project/pRognostic-data-repository (accessed on 10 September 2017).
MAE | Battery #6 RMSE | Maximum Error | MAE | Battery #7 RMSE | Maximum Error | |
---|---|---|---|---|---|---|
XGBoost | 0.001615 | 0.002132 | 0.005972 | 0.001336 | 0.001712 | 0.004244 |
Random Forest (RF) | 0.004379 | 0.006947 | 0.028183 | 0.002716 | 0.006108 | 0.059234 |
KNN | 0.016193 | 0.020937 | 0.061488 | 0.005732 | 0.008387 | 0.027463 |
Linear Regression (LR) | 0.020204 | 0.028393 | 0.092293 | 0.016584 | 0.025346 | 0.088665 |
SVM | 0.045509 | 0.056715 | 0.118535 | 0.053396 | 0.060812 | 0.099835 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Fei, C.; Xia, H. Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies 2020, 13, 812. https://doi.org/10.3390/en13040812
Song S, Fei C, Xia H. Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies. 2020; 13(4):812. https://doi.org/10.3390/en13040812
Chicago/Turabian StyleSong, Shuxiang, Chen Fei, and Haiying Xia. 2020. "Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction" Energies 13, no. 4: 812. https://doi.org/10.3390/en13040812
APA StyleSong, S., Fei, C., & Xia, H. (2020). Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction. Energies, 13(4), 812. https://doi.org/10.3390/en13040812