Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si
Abstract
:1. Introduction
Objectives
2. Materials and Methods
2.1. Mechanical Treatment in Pilot Scale in the PhotoLife Process
- Coarse fraction: 3 < x < 20 mm;
- Intermediate fraction: 0.5 < x < 3 mm;
- Fine fraction: x < 0.5 mm.
2.2. Solvent Treatment at Pilot Scale in the PhotoLife Process
2.3. Polymers Separation and Metal Recycling in the Advanced PhotoLife Process
2.4. Process Simulations
3. Results and Discussion
3.1. PhotoLife Process
3.2. Advanced PhotoLife Process
- -
- Separating the different polymers in the polymeric residue
- -
- Recycling the Tedlar® backsheet
- -
- Thermally treating the EVA residues
- -
- Recycling the Ag and Si from the ashes
3.3. Process Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holdren, J.P. Energy and Sustainability. Science 2007, 315, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [Google Scholar] [CrossRef]
- SPE. Global Market Outlook. Available online: https://www.solarpowereurope.org/wp-content/uploads/2018/09/Global-Market-Outlook-2018-2022.pdf (accessed on 21 July 2020).
- IRENA; IEA-PVPS. End of Life Management: Solar Photovoltaic Panels. Available online: https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (accessed on 21 July 2020).
- Padoan, F.C.S.M.; Altimari, P.; Pagnanelli, F. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Sol. Energy 2019, 177, 746–761. [Google Scholar] [CrossRef]
- Paiano, A. Photovoltaic waste assessment in Italy. Renew. Sustain. Energy Rev. 2015, 41, 99–112. [Google Scholar] [CrossRef]
- Sapra, G.; Chaudhary, V.; Kumar, P.; Sharma, P.; Saini, A. Materials Today: Proceedings Recovery of silica nanoparticles from waste PV modules. Mater. Today Proc. 2020, 6–11. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J. Clean. Prod. 2017, 161, 1129–1142. [Google Scholar] [CrossRef]
- EU. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE) (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0019&from=EN (accessed on 21 July 2020).
- U.S. EPA. Solid Waste Management and Green House Gases: A Life Cycle Assessment. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/60000AVO.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000000%5C60000AVO.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL# (accessed on 21 July 2020).
- Gerbinet, S.; Belboom, S.; Léonard, A. Life Cycle Analysis (LCA) of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2014, 38, 747–753. [Google Scholar] [CrossRef]
- Frischknecht, R.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/rep12_11.pdf (accessed on 21 July 2020).
- Mahmoudi, S.; Huda, N.; Alavi, Z.; Islam, M.T.; Behnia, M. End-of-life photovoltaic modules: A systematic quantitative literature review. Resour. Conserv. Recycl. 2019, 146, 1–16. [Google Scholar] [CrossRef]
- Tao, M.; Fthenakis, V.; Ebin, B.; Steenari, B.; Butler, E.; Sinha, P.; Corkish, R.; Wambach, K.; Simon, E.S. Major challenges and opportunities in silicon solar module recycling. Prog. Photovolt. Res. Appl. 2020, pip.3316. [Google Scholar] [CrossRef]
- Tsanakas, J.A.; Heide, A.; Radavičius, T.; Denafas, J.; Lemaire, E.; Wang, K.; Poortmans, J.; Voroshazi, E. Towards a circular supply chain for PV modules: Review of today’s challenges in PV recycling, refurbishment and re-certification. Prog. Photovolt. Res. Appl. 2020, 28, 454–464. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Alvarez-Gaitan, J.P.; Bilbao, J.I.; Corkish, R. A Review of Recycling Processes for Photovoltaic Modules. In Solar Panels and Photovoltaic Materials; InTechOpen: London, UK, 2018. [Google Scholar]
- Pagnanelli, F.; Moscardini, E.; Altimari, P.; Padoan, F.C.S.M.; Abo Atia, T.; Beolchini, F.; Amato, A.; Toro, L. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment. J. Environ. Manag. 2019, 248, 109313. [Google Scholar] [CrossRef] [PubMed]
- Dias, P.; Veit, H. Recycling Crystalline Silicon Photovoltaic Modules. Emerg. Photovolt. Mater. 2018, 61–102. [Google Scholar] [CrossRef]
- Veolia Group Veolia Opens the First European Plant Entirely Dedicated to Recycling Photovoltaic Panels. Available online: https://www.veolia.com/en/newsroom/news/recycling-photovoltaic-panels-circular-economy-france (accessed on 14 July 2020).
- Nike*, S.r.l. II Trattamento dei Pannelli Fotovoltaici a Fine Vita. Available online: http://www.pvcycle.org/wp-content/uploads/Nike_3rd-RC_2013.pdf (accessed on 14 July 2020).
- CEN; CENELEC. WORK PROGRAMME 2016 European Standardization and Related Activities. Available online: https://www.cencenelec.eu/News/Publications/Publications/CEN-CENELEC-WP2016_EN.pdf (accessed on 21 July 2020).
- Campadello, L.; Deubzer, O.; Langle, A.; Amadei, A.; Arienti, G.; Sala, M. Upgrading Regulations and Standards to Enable Recycling of CRM from WEEE. Available online: http://scrreen.eu/wp-content/uploads/2019/06/SCRREEN-D8.2-Upgrading-regulations-and-standards-to-enable-recycling-of-CRM-from-WEEE-V3.pdf (accessed on 21 July 2020).
- Sasil, S.r.l. FRELP Project (LIFE+ 12—ENV/IT/000904). Available online: https://www.sasil-life.com/ricerca-e-sviluppo/progetti-life/progetto-frelp/ (accessed on 4 August 2020).
- Geltz Umwelttechnologie GmbH ELSi—Recycling of Photovoltaic Modules. Available online: https://geltz.de/en/elsi-pv/ (accessed on 4 August 2020).
- DuPont TM Tedlar®. Available online: https://www.dupont.com/brands/tedlar.html (accessed on 14 July 2020).
- IEA-PVPS. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies. Available online: https://iea-pvps.org/wp-content/uploads/2020/01/End_of_Life_Management_of_Photovoltaic_Panels_Trends_in_PV_Module_Recycling_Technologies_by_task_12.pdf (accessed on 21 July 2020).
- Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [Google Scholar] [CrossRef]
- Prado, P.F.A.; Tenório, J.A.S.; Espinosa, D.C.R. Alternative Method for Materials Separation from Crystalline Silicon Photovoltaic Modules. In Energy Technology 2017; Zhang, L., Drelich, J.W., Neelameggham, N.R., Guillen, D.P., Haque, N., Zhu, J., Sun, Z., Wang, T., Howarter, J.A., Tesfaye, F., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 277–282. [Google Scholar]
- Yan, Y.; Wang, Z.H.I.; Wang, D.; Cao, J.; Ma, W.; Wei, K.; Yun, L.E.I. Recovery of Silicon via Using KOH-Ethanol Solution by Separating Different Layers of End-of-Life PV Modules. JOM 2020, 72, 2624–2632. [Google Scholar] [CrossRef]
- Granata, G.; Pagnanelli, F.; Moscardini, E.; Havlik, T.; Toro, L. Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells 2014, 123, 239–248. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Altimari, P.; Bellagamba, M.; Granata, G.; Moscardini, E.; Schiavi, P.G.; Toro, L. Pulsed electrodeposition of cobalt nanoparticles on copper: Influence of the operating parameters on size distribution and morphology. Electrochim. Acta 2015, 155, 228–235. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Granata, G.; Atia, T.A.; Altimari, P.; Havlik, T.; Toro, L. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Manag. 2017, 59, 422–431. [Google Scholar] [CrossRef] [PubMed]
- PhotoLife Project (LIFE13 ENV/IT/001033). Available online: http://www.photolifeproject.eu (accessed on 14 July 2020).
- Pagnanelli, F.; Atia, T.A.; Altimari, P.; Baldassari, L.; Moscardini, E.; Padoan, F.C.; Toro, L. Pilot scale tests for recycling of photovoltaic panels by physical and chemical treatment. In Sustainable Industrial Processing Summit SIPS 2017 Volume 7. Recycling, Secondary Batteries and Environmental Protection; FLOGEN Star Outreach: Montreal, QC, Canada, 2017; pp. 114–120. [Google Scholar]
- Sathaiyan, N.; Nandakumar, V.; Ramachandran, P. Hydrometallurgical recovery of silver from waste silver oxide button cells. J. Power Sources 2006, 161, 1463–1468. [Google Scholar] [CrossRef]
- Woods, D.R. Appendix D: Capital Cost Guidelines. In Rules of Thumb in Engineering Practice; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 376–436. [Google Scholar]
- Garrett, D.E. Appendix 1: Equipment Cost Estimates. In Chemical Engineering Economics; Butterworth-Heinemann: London, UK, 1983; pp. 636–637. [Google Scholar]
- Uçar, S.; Ozkan, A.R.; Yanik, J.; Karagöz, S. The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene. Fuel Process. Technol. 2008, 89, 1201–1206. [Google Scholar] [CrossRef]
Fraction | Components | Weight (kg) | ||||||
---|---|---|---|---|---|---|---|---|
Glass | Al Frames | Metallic Contacts | EVA | Si | Ag | Tedlar® | ||
EOL PVP (100 kg) | 69.5 | 10 | 1.2 | 11.3 | 3.71 | 0.047 | 4.3 | 100 |
Al frames | 10 | 10 | ||||||
coarse fraction (>3 mm) | 44.7 | 1.2 | 11.3 | 3.30 | 0.042 | 4.3 | 64.8 | |
Glass (>3 mm) | 44.7 | 44.7 | ||||||
metallic filaments | 1.2 | |||||||
Polymeric residue (Tedlar® + EVA + cell) | 9.6 | 3.30 | 0.042 | 4.3 | 19.4 | |||
fine fraction (<0.5 mm) | 5.9 | 0.39 | 0.005 | 6.3 | ||||
intermediate fraction (0.5–3 mm) | 19 | 0.01 | 0.0002 | 18.9 |
Fraction | Recycling (kg) | Recovery (kg) | Wastes (kg) | Recoverable Value $ Per 100 kg EOL PVP |
---|---|---|---|---|
Al frames | 10 | 10 | 8.3 | |
Glass (>3mm) | 45 | 45 | 10.5 | |
Metallic filaments | 1.2 | 1.2 | 2.8 | |
Polymeric residue | 19 | |||
Fine fraction (<0.5mm) | 6 | |||
Intermediate fraction (0.5–3 mm) | 19 | 19 | 0 | |
TOTAL | 75 | 75 | 25 | 22 |
% RATE | 75% | 75% | 30% |
Recycled Component | Weight (kg in 100 kg EOLPVP) | Market Price ($/kg) | Estimated Value ($ per 100 kg EOLPVP) | % Value |
---|---|---|---|---|
Al frames | 10 | 0.8 | 8.3 | 11.5 |
Metallic filaments | 1.2 | 2.4 | 2.8 | 3.9 |
High quality glass | 69.5 | 0.2 | 16.4 | 22.8 |
Tedlar® | 4.3 | 0.001 | 0.005 | 0.008 |
Ag | 0.047 | 708 | 33.5 | 46.6 |
Si | 3.71 | 3.0 | 10.9 | 15.2 |
TOTAL | 88 | 72 |
Fraction | Components | Weight (kg) | ||||||
---|---|---|---|---|---|---|---|---|
Glass | Al Frames | Metallic Contacts | EVA | Si | Ag | Tedlar® | ||
EOL PVP (100 kg) | 69.5 | 10 | 1.2 | 11.3 | 3.71 | 0.047 | 4.3 | 100 |
Al frames | 10 | 10 | ||||||
Coarse fraction (>3 mm) | 44.7 | 1.2 | 11.3 | 3.30 | 0.042 | 4.3 | 64.8 | |
Glass (>3 mm) | 44.7 | 42 | ||||||
>Metallic filaments | 1.2 | 1.2 | ||||||
Tedlar® | 4.3 | 4.3 | ||||||
Polymeric residue (EVA + cell) | 9.6 | 3.30 | 0.042 | 12.9 | ||||
Metal bearing ashes | 3.30 | 0.042 | 3.34 | |||||
Ag | 0.032 | 0.032 | ||||||
Si | 3.30 | 3.30 | ||||||
Fine fraction (<0.5mm) | 5.9 | 0.39 | 0.005 | 6.3 | ||||
Intermediate fraction (0.5–3mm) | 18.9 | 0.01 | 0.0002 | 18.9 | ||||
EVA | 1.7 | 1.7 |
Fraction | Recycling (kg) | Recovery (kg) | Wastes (kg) | Recoverable Value $ per 100 kg EOL PVP |
---|---|---|---|---|
Al frames | 10 | 10 | 8.3 | |
Glass (>3 mm) | 45 | 45 | 10.5 | |
Metallic filaments | 1.2 | 1.2 | 2.8 | |
Tedlar® | 4.3 | 4.3 | 0.006 | |
Polymeric residue (EVA + cell) | 9.6 | |||
Ag | 0.032 | 0.032 | 22.7 | |
Si | 3.3 | 3.3 | 97 | |
Fine fraction (<0.5 mm) | 6 | |||
Intermediate fraction (0.5–3 mm) | 19 | 19 | 0.0 | |
EVA | 1.7 | |||
TOTAL | 82 | 94 | 6 | 54 |
% RATE | 82% | 94% | 75% |
Recycling Volume (t/y of EOL-PVPs) | 3000 | 30,000 |
---|---|---|
Total Capital Investment ($) | 5,459,000 | 10,427,000 |
Capital Investment Charged to This Project ($) | 5,459,000 | 10,427,000 |
Operating Cost ($/y) | 6,882,000 | 25,561,000 |
Main Revenue ($/y) | 269,000 | 2,690,000 |
Other Revenues ($/y) | 2,667,744 | 26,677,441 |
Total Revenues ($/y) | 2,937,000 | 29,367,000 |
Cost Basis Batch Rate (t UPRF) | 1.76 | 17.62 |
Cost Basis Annual Rate (t UPRF/y) | 3000 | 30,000 |
Unit Processing Cost (t UPRF/y) | 2294.11 | 852.04 |
Net Unit Processing Cost (t UPRF/y) | 2294.11 | 852.04 |
Unit Processing Revenue (t UPRF/y) | 978.90 | 978.90 |
Gross Margin (%) | −145.52 | 11.37 |
Return on Investment (%) | −68.95 | 28.89 |
Payback Time (y) | N/A | 3.35 |
IRR (After Taxes) (%) | N/A | 9.61 |
NPV (at 1.0% Interest) ($) | −49,783,000 | 14,275,000 |
Recycling Volume (t/y) | 3000 | 30,000 |
---|---|---|
Cyclohexane (t/y) | −57 | −570.12 |
Glucose (t/y) | −0.42 | −4.17 |
HNO3 5 M (t/y) | −0.152 | −1514.93 |
Na2CO3 (t/y) | −404 | −4.04 |
NaCl (t/y) | −1976 | −19.76 |
NaOH (t/y) | 8515 | −8.33 |
Water (m3) | −346.00 | −3470.17 |
Acetic Acid (t/y) | +76.67 | +766.65 |
Ag (t/y) | +1.28 | +12.81 |
Aluminum Frames (t/y) | +300.00 | +3000.00 |
Cu-Al (t/y) | +36.00 | +360.00 |
Glass (>3 mm) (t/y) | 1344.8 | +13,444.00 |
Si (t/y) | +111.00 | +1110.00 |
Tedlar® (t/y) | +129.00 | +1290.00 |
Type | Material | Cost ($/kg) |
---|---|---|
Raw Materials | Cyclohexane | 1.00 |
Glucose | 0.00 | |
HNO3 5 M | 0.14 | |
Na2CO3 | 0.20 | |
NaCl | 0.02 | |
NaOH | 0.25 | |
Water | 1.50 | |
Revenues | EOL-PVP | 0.5 |
Glass | 0.2 | |
Si | 2.8 | |
Ag | 600 | |
Cu-Al | 2 | |
Aluminum Frame | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubino, A.; Granata, G.; Moscardini, E.; Baldassari, L.; Altimari, P.; Toro, L.; Pagnanelli, F. Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si. Energies 2020, 13, 6690. https://doi.org/10.3390/en13246690
Rubino A, Granata G, Moscardini E, Baldassari L, Altimari P, Toro L, Pagnanelli F. Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si. Energies. 2020; 13(24):6690. https://doi.org/10.3390/en13246690
Chicago/Turabian StyleRubino, Antonio, Giuseppe Granata, Emanuela Moscardini, Ludovica Baldassari, Pietro Altimari, Luigi Toro, and Francesca Pagnanelli. 2020. "Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si" Energies 13, no. 24: 6690. https://doi.org/10.3390/en13246690
APA StyleRubino, A., Granata, G., Moscardini, E., Baldassari, L., Altimari, P., Toro, L., & Pagnanelli, F. (2020). Development and Techno-Economic Analysis of an Advanced Recycling Process for Photovoltaic Panels Enabling Polymer Separation and Recovery of Ag and Si. Energies, 13(24), 6690. https://doi.org/10.3390/en13246690