Towards Ferry Electrification in the Maritime Sector
Abstract
:1. Introduction
1.1. State-of-the-Art
1.2. Limitations in the Existing Surveys
1.3. Contributions
1.4. Organization
2. An Eco-Friendly Hybrid Propulsion System
3. Research Methods
3.1. Design Research
3.2. Conduct Research
3.2.1. Search Keywords
3.2.2. Case Selection
3.2.3. Data Collection
3.3. Data Analysis and Conclusions
4. Results
4.1. Data Extraction
Ref. No. | Name | Country | Power Train | Battery (kWh) | Battery Type | Year | Company | Passengers | Cars | Speed (knots) | Length (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
[40] | FSC Alsterwasser | Germany | Hybrid | 200 | Lead-Gel | 2008 | Zemships | 100 | - | 8 | 25 |
[41] | Nemo H2 | Nether-lands | Hybrid | 70 | - | 2009 | Govt. and Industry | 87 | - | 9 | 22 |
[42] | Viking Lady | Norway | Hybrid | 500 | Li-ion | 2009 | Eidesvik | 25 | - | 15.5 | 92 |
[46] | MV Hallaig | Scotland | Hybrid | 700 | Li-ion | 2012 | CalMac Ferries Ltd | 150 | 23 | 9 | 43 |
[47] | MV Lochinvar | Scotland | Hybrid | 700 | Li-ion | 2013 | CalMac Ferries Ltd | 150 | 23 | 9 | 43 |
[49] | Prinsesse Benedikte | Denmark | Hybrid | 1600 | Li-ion | 2013 | Scandlines | 1140 | 364 | 18.5 | 142 |
[50] | Prins Richard | Denmark | Hybrid | 1600 | Li-ion | 2014 | Scandlines | 1140 | 364 | 18.5 | 142 |
[51] | M/F Deutschland | Germany | Hybrid | 1600 | Li-polymer | 2014 | Scandlines | 1200 | 364 | 18.5 | 142 |
[52] | M/S Sjovagen | Sweden | Electric | 500 | Li-ion | 2014 | Ballerina | 150 | - | 8.5 | 24.5 |
[53] | Movitz | Sweden | Electric | 120 | NiMH | 2014 | Echandia Marine | 100 | - | 9 | 22.8 |
[54] | MV Ampere | Norway | Electric | 1000 | Li-ion | 2015 | Norled | 360 | - | 10 | 79 |
[55] | MV Island Clipper | Norway | Hybrid | 875 | Li-ion | 2015 | Inland Offshore Management AS | 56 | - | 15 | 97 |
[61] | BB Green | Nether-lands | Hybrid | 200 | Li-ion | 2015 | Partly funded by an EU dev. project | 100 | - | 30 | 22 |
[45] | Vision of the Fjords | Norway | Hybrid | 600 | Li-ion | 2016 | The Fjords | 399 | - | 19.5 | 40 |
[48] | MV Catriona | Scotland | Hybrid | 700 | Li-ion | 2016 | CalMac Ferries Ltd | 150 | 23 | 9 | 43 |
[56] | OV Bokfjord | Denmark | Hybrid | 850 | Li-ion | 2016 | Hvide Sande Shipyard | 16 | - | 13.5 | 44 |
[62] | Aditya | India | Electric | 50 | Li-ion | 2016 | Kerala State Water Transport Dept. | 75 | - | 7.5 | 21 |
[33] | MF Tycho Brahe | Denmark | Electric | 4100 | Li-ion | 2017 | Scandlines | 1250 | 240 | 14.5 | 111 |
[34] | Elektra | Finland | Hybrid | 1000 | Li-ion | 2017 | Finferries | 375 | 90 | 11 | 98 |
[57] | Viking Princess | Norway | Hybrid | 511 | Li-ion | 2017 | Eidesvik | 28 | - | 11.4 | 90 |
[58] | Zhongtiandianyun 001 | China | Electric | 2400 | Li-ion | 2017 | Guangzhou Shipyard International | - | - | 7 | 70 |
[44] | Future of the Fjords | Norway | Electric | 1800 | Li-ion | 2018 | The Fjords | 400 | - | 16 | 43 |
[59] | Enhydra | USA | Hybrid | 160 | Li-ion | 2018 | Red & White Fleet | 600 | - | 13 | 39 |
[43] | Ellen | Denmark | Electric | 4300 | Li-ion | 2019 | EU H2020 | 200 | - | 21 | 60 |
[60] | MV Waterman | USA | Hybrid | 80 | Li-ion | 2019 | All America Marine, Inc. | 150 | - | 15 | 21 |
[63] | MS Color Hybrid | Norway | Hybrid | 5000 | Li-ion | 2019 | Color Line | 2000 | - | 17 | 160 |
Ref. No. | Name | Country | Power Train | Battery (kWh) | Battery Type | Year | Project | Passengers | Cars | Speed (knots) | Length (m) |
---|---|---|---|---|---|---|---|---|---|---|---|
[66] | Glutra Ferry | Norway | Hybrid | - | - | 2002 | R&D | - | 100 | 12 | 94.8 |
[64] | Boat | Italy | Electric | 226.8 | Li-ion | 2011 | R&D | - | - | 6 | - |
[72] | Alsterwasser | Germany | Hybrid | 200 | Lead-Gel | 2014 | R&D | 100 | 200 | 8 | 25 |
[32] | Typical Shuttle | Italy | Hybrid | 500, 300, 160 | Li-ion | 2015 | R&D | 48 | - | 13 | 24 |
[67] | Hybrid ship | China | Hybrid | - | LiFePO4 | 2016 | R&D | - | - | - | 333 |
[68] | Alsterwasser | Germany | Hybrid | 200 | Lead-Gel | 2016 | R&D | 100 | - | 8 | 25 |
[69] | Alsterwasser | Germany | Hybrid | 200 | Lead-Gel | 2016 | R&D | 100 | - | 8 | 25 |
[71] | M/S Smyril | Denmark | Hybrid | 300 | Li-ion | 2016 | R&D | 976 | - | 21 | 123 |
[65] | Bowen Ferry | Australia | Hybrid | 13.7 | - | 2018 | R&D | - | 30 | 7 | 35 |
[70] | Skeena Queen | Canada | Hybrid | 360 | - | 2019 | R&D | 600 | - | 14 | 110 |
4.2. Data Synthesis
4.3. Energy Storage System (ESS): Batteries
5. Discussion
5.1. Current State of Affairs
5.2. Challenges and Emerging Trends
5.2.1. Technical
5.2.2. Operational
5.2.3. Legislation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schnurr, R.E.; Walker, T.R. Marine Transportation and Energy Use. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- European Commission, SEC (2005) 1133. Available online: https://ec.europa.eu/transparency/regdoc/rep/2/2005/EN/2-2005-1133-EN-1-0.pdf (accessed on 10 October 2020).
- Gagatsi, E.; Estrup, T.; Halatsis, A. Exploring the potentials of electrical waterborne transport in Europe: The E-ferry concept. Transp. Res. Procedia 2016, 14, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Sciberras, E.A.; Zahawi, B.; Atkinson, D.J. Reducing shipboard emissions–Assessment of the role of electrical technologies. Transp. Res. Part D Transp. Environ. 2017, 51, 227–239. [Google Scholar] [CrossRef]
- European Seaports Organisation: ESPO Annual Report for 2006—2007, May 2007. Available online: https://www.espo.be/media/espopublications/annualreport2007.pdf (accessed on 10 October 2020).
- Klebanoff, L.; Pratt, J.; Leffers, C.; Sonerholm, K.; Escher, T.; Burgard, J.; Ghosh, S. Comparison of the greenhouse gas and criteria pollutant emissions from the SF-BREEZE high-speed fuel-cell ferry with a diesel ferry. Transp. Res. Part D Transp. Environ. 2017, 54, 250–268. [Google Scholar] [CrossRef]
- Merien-Paul, R.H.; Enshaei, H.; Jayasinghe, S.G. In-situ data vs. bottom-up approaches in estimations of marine fuel consumptions and emissions. Transp. Res. Part D Transp. Environ. 2018, 62, 619–632. [Google Scholar] [CrossRef]
- McArthur, D.P.; Osland, L. Ships in a city harbour: An economic valuation of atmospheric emissions. Transp. Res. Part D Transp. Environ. 2013, 21, 47–52. [Google Scholar] [CrossRef]
- Winnes, H.; Styhre, L.; Fridell, E. Reducing GHG emissions from ships in port areas. Res. Transp. Bus. Manag. 2015, 17, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Valladolid, P.G.; Tunestål, P.; Monsalve-Serrano, J.; García, A.; Hyvönen, J. Impact of diesel pilot distribution on the ignition process of a dual fuel medium speed marine engine. Energy Convers. Manag. 2017, 149, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Livanos, G.A.; Theotokatos, G.; Pagonis, D.-N. Techno-economic investigation of alternative propulsion plants for Ferries and RoRo ships. Energy Convers. Manag. 2014, 79, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.F.; Haglind, F.; Larsen, U. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides. Energy Convers. Manag. 2014, 85, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, A.; Eliopoulou, E. The European Passenger Car Ferry Fleet-Review of design features and stability characteristics of pre-and post SOLAS 90 Ro-Ro Passenger ships. In Proceedings of the Euroconference on Passenger Ship Design, Construction, Safety and Operation, Anissaras-Crete, Crete, Greece, 15–17 October 2001. [Google Scholar]
- Hansen, J.F.; Wendt, F. History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends. Proc. IEEE 2015, 103, 2229–2242. [Google Scholar] [CrossRef]
- Dedes, E.K.; Hudson, D.A.; Turnock, S.R. Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping. Energy Policy 2012, 40, 204–218. [Google Scholar] [CrossRef]
- Ling-Chin, J.; Roskilly, A. Investigating a conventional and retrofit power plant on-board a Roll-on/Roll-off cargo ship from a sustainability perspective–A life cycle assessment case study. Energy Convers. Manag. 2016, 117, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Koo, K.Y.; Joung, T.-H. A study on the necessity of integrated evaluation of alternative marine fuels. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 26–31. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Hoang, A.T.; Nizetic, S.; Nguyen, X.P.; Le, A.T.; Luong, C.N.; Chu, V.D.; Pham, V.V. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int. Trans. Electr. Energy Syst. 2020, e12580. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F. A comprehensive review of maritime microgrids: System architectures, energy efficiency, power quality, and regulations. IEEE Access 2019, 7, 67249–67277. [Google Scholar] [CrossRef]
- Nuchturee, C.; Li, T.; Xia, H. Energy efficiency of integrated electric propulsion for ships–A review. Renew. Sustain. Energy Rev. 2020, 134, 110145. [Google Scholar] [CrossRef]
- Groppi, D.; Pfeifer, A.; Garcia, D.A.; Krajačić, G.; Duić, N. A review on energy storage and demand side management solutions in smart energy islands. Renew. Sustain. Energy Rev. 2020, 135, 110183. [Google Scholar] [CrossRef]
- Ma, S.; Lin, M.; Lin, T.-E.; Lan, T.; Liao, X.; Maréchal, F.; Yang, Y.; Dong, C.; Wang, L. Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. Renew. Sustain. Energy Rev. 2020, 135, 110119. [Google Scholar] [CrossRef]
- Mutarraf, M.U.; Terriche, Y.; Niazi, K.A.K.; Vasquez, J.C.; Guerrero, J.M. Energy storage systems for shipboard microgrids—A review. Energies 2018, 11, 3492. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Wang, Y.; Gou, B.; Xu, Y. Toward Future Green Maritime Transportation: An Overview of Seaport Microgrids and All-Electric Ships. IEEE Trans. Veh. Technol. 2019, 69, 207–219. [Google Scholar] [CrossRef]
- Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the lifecycle environmental benefits of full battery powered ships: Comparative analysis of marine diesel and electricity. J. Mar. Sci. Eng. 2020, 8, 580. [Google Scholar] [CrossRef]
- Koumentakos, A.G. Developments in Electric and Green Marine Ships. Appl. Syst. Innov. 2019, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, A.; Prebeg, P.; Duić, N. Challenges and opportunities of zero emission shipping in smart islands: A study of zero emission ferry lines. eTransportation 2020, 3, 100048. [Google Scholar] [CrossRef]
- Malla, U. Design and sizing of battery system for electric yacht and ferry. Int. J. Interact. Des. Manuf. (IJIDeM) 2020, 14, 137–142. [Google Scholar] [CrossRef]
- Solar Irradiance. Available online: http://www.solarelectricityhandbook.com/solar-irradiance.html (accessed on 10 October 2020).
- Enevoldsen, P. Onshore wind energy in Northern European forests: Reviewing the risks. Renew. Sustain. Energy Rev. 2016, 60, 1251–1262. [Google Scholar] [CrossRef]
- Toffoli, A.; Bitner-Gregersen, E.M. Types of ocean surface waves, wave classification. Encycl. Marit. Offshore Eng. 2017, 1–8. [Google Scholar] [CrossRef]
- Bianucci, M.; Merlino, S.; Ferrando, M.; Baruzzo, L. The optimal hybrid/electric ferry for the liguria Natural Parks. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–10. [Google Scholar]
- MF Tycho Brahe—Battery-Electric Car-Ferry. Available online: https://deif-cdn.azureedge.net/v-dj18h6oakhn2/-/media/files/publications/tycho-brahe/tycho-brahe-uk-lowresnewversion082018.pdf?la=en&hash=C5B875A237038D5868BABB833AE839773301A158 (accessed on 10 October 2020).
- Elektra—Hybrid-Electric Ferry. Available online: https://www.ship-technology.com/features/elektra-finlands-first-hybrid-electric-ferry/ (accessed on 10 October 2020).
- MAN Energy Solutions. Available online: https://greece.man-es.com/docs/librariesprovider11/uptime-anytime---l2330-6th-june/6_hybrid-solutions-batteries-pto-gensets-mzjr.pdf?sfvrsn=f020c0a2_2 (accessed on 30 November 2020).
- Scapens, R.W. Doing case study research. In The Real Life Guide to Accounting Research; Elsevier: Amsterdam, The Netherlands, 2004; pp. 257–279. [Google Scholar] [CrossRef]
- Rashid, M.; Anwar, M.W.; Khan, A.M. Toward the tools selection in model based system engineering for embedded systems—A systematic literature review. J. Syst. Softw. 2015, 106, 150–163. [Google Scholar] [CrossRef]
- Amjad, A.; Azam, F.; Anwar, M.W.; Butt, W.H.; Rashid, M. Event-driven process chain for modeling and verification of business requirements–a systematic literature review. IEEE Access 2018, 6, 9027–9048. [Google Scholar] [CrossRef]
- Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible architectures for cryptographic algorithms—A systematic literature review. J. Circuits Syst. Comput. 2019, 28, 1930003. [Google Scholar] [CrossRef]
- FCS Alsterwasser—Zemships. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=Zemships_Brochure_EN.pdf (accessed on 10 October 2020).
- Nemo—First Fuel Cell Boat. Available online: https://www.reuters.com/article/us-dutch-fuelcell-idUSTRE5B83HD20091209 (accessed on 10 October 2020).
- Viking Lady—Offshore Supply Vessel. Available online: https://www.ship-technology.com/projects/viking-lady/ (accessed on 10 October 2020).
- Ellen—The World’s Largest E-Ferry. Available online: https://www.euronews.com/2019/11/25/meet-ellen-the-world-s-largest-e-ferry-connecting-two-danish-islands-without-emitting-any (accessed on 10 October 2020).
- The Future of the Fjords—All Electric Sight Seeing Vessel. Available online: https://www.ship-technology.com/projects/future-of-the-fjords-sightseeing-vessel (accessed on 10 October 2020).
- Vision of The Fjords—The Hybrid Ferry. Available online: https://www.vatnahalsen.no/en/vision-fjords (accessed on 10 October 2020).
- MV Hallaig—Caledonian Maritime Assets Ltd. Available online: https://www.cmassets.co.uk/project/mv-hallaig (accessed on 10 October 2020).
- MV Lochinvar—Caledonian Maritime Assets Ltd. Available online: https://www.cmassets.co.uk/project/mv-lochinvar/ (accessed on 10 October 2020).
- MV Catriona—Caledonian Maritime Assets Ltd. Available online: https://www.cmassets.co.uk/project/mv-catriona/ (accessed on 10 October 2020).
- MV Prinsesse Benedikte—Hybrid Ferry. Available online: https://www.scandlines.com/about-scandlines/about-scandlines-frontpage/ferries-and-ports/prinsesse-benedikte (accessed on 10 October 2020).
- MV Prins Richard—Hybrid Ferry. Available online: https://www.scandlines.com/about-scandlines/about-scandlines-frontpage/ferries-and-ports/prins-richard (accessed on 10 October 2020).
- M/F Deutschland—Scandlines Deutschland GmbH. Available online: http://www.ferry-site.dk/ferry.php?id=9151541&lang=en (accessed on 10 October 2020).
- M/S Sjovagen—Electric Powered Ferry. Available online: https://www.greenport.com/news101/europe/new-electric-ferry-unveiled-in-sweden (accessed on 10 October 2020).
- Movitz—The World´s First Supercharged Ferry. Available online: https://echandia.se/echandia/projects/movitz/ (accessed on 10 October 2020).
- Ampere—A Battery-Electric Ferry. Available online: https://archive.nordregio.se/en/Publications/Publications-2016/GREEN-GROWTH-IN-NORDIC-REGIONS-50-ways-to-make-/Clean-tech-and-renewable-energy--/Amper/index.html (accessed on 10 October 2020).
- MV Island Clipper—Offshore Service Vessel. Available online: https://www.islandoffshore.com/vessel/mv-island-clipper (accessed on 10 October 2020).
- OV Bokfjord—Multipurpose Vessel. Available online: https://hvsa.dk/portfolio_page/ov-boekfjord/ (accessed on 10 October 2020).
- Viking Princess—Hybrid Energy System on Board the Offshore Supply Vessel. Available online: https://newpowerprogress.com/offshore-supply-vessel-goes-hybrid/ (accessed on 10 October 2020).
- Zhongtiandianyun 001—Electric Cargo Ship. Available online: https://plugboats.com/china-launches-electric-cargo-ship-to-carry-coal/ (accessed on 10 October 2020).
- Enhydra—Hybrid Ferry. Available online: https://www.greenbiz.com/article/future-ferries-electric-too (accessed on 10 October 2020).
- MV Waterman—Passenger Catamaran Ferry. Available online: https://www.pacmar.com/story/2019/04/01/features/propulsion/693.html (accessed on 10 October 2020).
- BB Green—Electric Commuter Ferry. Available online: https://www.volvopenta.com/marinecommercial/en-en/news/2017/june/bb-green-electric-commuter-ferry-awarded-electric-and-hybrid-pro.html (accessed on 10 October 2020).
- Aditya—Solar-Powered Ferry. Available online: https://en.wikipedia.org/w/index.php?title=Aditya_(boat)&oldid=954179830 (accessed on 10 October 2020).
- MS Color—Hybrid Ferry. Available online: https://www.ship-technology.com/projects/color-hybrid-ferry/ (accessed on 10 October 2020).
- Spagnolo, G.S.; Papalilo, D.; Martocchia, A. Eco friendly electric propulsion boat. In Proceedings of the 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 8–11 May 2011; pp. 1–4. [Google Scholar]
- Al-Falahi, M.D.; Nimma, K.S.; Jayasinghe, S.D.; Enshaei, H.; Guerrero, J.M. Power management optimization of hybrid power systems in electric ferries. Energy Convers. Manag. 2018, 172, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Meek-Hansen, B. Fuel cell technology for ferries. In Proceedings of the IMTA Conference, Gold Coast: Marintek, Ottawa, ON, Canada, 22–24 October 2002; pp. 1–12. [Google Scholar]
- Diab, F.; Lan, H.; Ali, S. Novel comparison study between the hybrid renewable energy systems on land and on ship. Renew. Sustain. Energy Rev. 2016, 63, 452–463. [Google Scholar] [CrossRef]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. Int. J. Hydrog. Energy 2016, 41, 22453–22464. [Google Scholar] [CrossRef] [Green Version]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrog. Energy 2017, 42, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Chen, L.; Dong, Z. Modeling, Simulation and Assessment of a Hybrid Electric Ferry: Case Study for Mid-Size Ferry. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Anaheim, CA, USA, 18–21 August 2019; p. V009T012A028. [Google Scholar]
- Bassam, A.; Phillips, A.; Turnock, S.; Wilson, P.A. Design, modelling and simulation of a hybrid fuel cell propulsion system for a domestic ferry. In Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures (PRADS’ 2016), Copenhagen, Denmark, 4–8 September 2016; Technical University of Denmark: Lyngby, Denmark, 2016; pp. 545–553. [Google Scholar]
- Han, J.; Charpentier, J.-F.; Tang, T. An energy management system of a fuel cell/battery hybrid boat. Energies 2014, 7, 2799–2820. [Google Scholar] [CrossRef] [Green Version]
- Leading Companies in Lithium Ion Battery Market. Available online: https://www.aheadintel.com/leading-companies-lithium-ion-battery-market/ (accessed on 30 November 2020).
- Lithium-Ion Battery Costs and Market. Available online: http://enerjiye.com/wp-content/uploads/2018/12/battery-market.pdf (accessed on 30 November 2020).
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.-M.; Goutam, S.; Rodriguez, P. Evaluation of lithium-ion battery second life performance and degradation. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Gaines, L.; Richa, K.; Spangenberger, J. Key issues for Li-ion battery recycling. MRS Energy Sustain. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Rivas, M.H.; Van Mierlo, J. Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.; Zia, M.Y.I.; Rashid, M.; Rubens, G.Z.d.; Enevoldsen, P. Towards Ferry Electrification in the Maritime Sector. Energies 2020, 13, 6506. https://doi.org/10.3390/en13246506
Anwar S, Zia MYI, Rashid M, Rubens GZd, Enevoldsen P. Towards Ferry Electrification in the Maritime Sector. Energies. 2020; 13(24):6506. https://doi.org/10.3390/en13246506
Chicago/Turabian StyleAnwar, Sadia, Muhammad Yousuf Irfan Zia, Muhammad Rashid, Gerardo Zarazua de Rubens, and Peter Enevoldsen. 2020. "Towards Ferry Electrification in the Maritime Sector" Energies 13, no. 24: 6506. https://doi.org/10.3390/en13246506