To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland
Abstract
:1. Introduction
1.1. Manure Treatment for Sustainable Agriculture and Livestock Sectors
1.2. Bioeconomy Potential in Poland
1.3. Estimation of Manure Production and Potential
2. Material and Methods
2.1. Data Collection and Description of the Case Study
2.2. Manure Potential and Quality
2.2.1. Cattle Manure Supply
2.2.2. Pig Manure Supply
2.3. Bioenergy Potential of Manure
2.4. Scenarios for Bioenergy Production from Manure
2.5. Ecological Added Value
- avoided carbon dioxide (CO2) emissions from replacing fossil fuel sources, e.g., to produce electricity;
- methane (CH4) leakage from AD installations; and
- nitrous oxide (N2O) emissions from land application of manure.
2.6. Economic Added Value
3. Results
3.1. Manure Production and Characteristics
3.2. Spatial Distribution of Manure, Nutrients and Bioenergy Potential
3.3. Mass Balance of Manure, N and P and the Energy Products of AD Process
3.3.1. Ecological Added-Value of Bioenergy
3.3.2. Economic Added-Value of Bioenergy
4. Discussion
4.1. Manure as a Biomass for Bio-Economy
4.2. Farm Scale Modeling vs. Statistical Data (Validation and Statistical Assessment Issues)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
ARMA | Agency for restructuring and modernization of agriculture |
ASABE | American Society of Agricultural and Biological Engineers |
BC | Base case |
CAP | Common agricultural policy |
CH4 | Methane |
CHP | Combined heat and power |
CO2 | Carbon dioxide |
GHG | Greenhouse gas |
GIS | Geographic information system |
GWh | Gigawatt-hour |
GWP | Global warming potential |
IT | Information technology |
LAU | Local administrative units |
LSU | Livestock unit |
Max | Maximum |
ME | Manure excretion |
ME.P | Manure excretion of pig |
M EUR | Million Euro |
Min | Minimum |
MW | Megawatt |
N | Nitrogen |
N2 | Nitrogen gas |
N2O | Nitrous oxide |
NE.P | Total nitrogen excretion of pig |
NUTS | Nomenclature of territorial units for statistics |
P | Phosphorus |
PE.P | Total phosphorus excretion of pig |
SD | Standard deviation |
SQL | Structured Query Language |
TS | Total solids |
UAA | Utilized agricultural area |
VS | Volatile solids |
References
- Scheftelowitz, M.; Thrän, D. Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany. Agriculture 2016, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Brevik, E.C.; Dawson, L.; Field, D.J.; Glaser, B.; Hartemink, A.E.; Hatano, R.; Lascelles, B.; Monger, H.C.; Scholten, T.; et al. Managing Soils for Recovering from the COVID-19 Pandemic. Soil Syst. 2020, 4, 46. [Google Scholar] [CrossRef]
- Gemmill-Herren, B. Closing the circle: An agroecological response to covid-19. Agric. Hum. Values 2020, 37, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Oniszk-Popławska, A.; Matyka, M.; Ryńska, E. Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland. Renew. Sustain. Energy Rev. 2014, 36, 329–349. [Google Scholar] [CrossRef]
- Vlyssides, A.; Mai, S.; Barampouti, E.M. Energy Generation Potential in Greece From Agricultural Residues and Livestock Manure by Anaerobic Digestion Technology. Waste Biomass Valorization 2015, 6, 747–757. [Google Scholar] [CrossRef]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valorization 2018, 11, 1019–1040. [Google Scholar] [CrossRef]
- Woźniak, E.; Twardowski, T. The current state of bioeconomy in Poland. Acta Biochim. Pol. 2017, 63, 731–735. [Google Scholar] [CrossRef]
- Ronzon, T.; M’Barek, R. Socioeconomic Indicators to Monitor the EU’s Bioeconomy in Transition. Sustainability 2018, 10, 1745. [Google Scholar] [CrossRef] [Green Version]
- Loizou, E.; Jurga, P.; Rozakis, S.; Faber, A. Assessing the Potentials of Bioeconomy Sectors in Poland Employing Input-Output Modeling. Sustainability 2019, 11, 594. [Google Scholar] [CrossRef] [Green Version]
- Igliński, B.; Buczkowski, R.; Cichosz, M. Biogas production in Poland—Current state, potential and perspectives. Renew. Sustain. Energy Rev. 2015, 50, 686–695. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Iglińska, A.; Cichosz, M.; Piechota, G.; Kujawski, W. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renew. Sustain. Energy Rev. 2012, 16, 4890–4900. [Google Scholar] [CrossRef]
- Muradin, M.; Foltynowicz, Z. Potential for Producing Biogas from Agricultural Waste in Rural Plants in Poland. Sustainability 2014, 6, 5065–5074. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Economy. Directions of Development for Agricultural Biogas Plant in Poland in 2010–2020. 2010. Available online: https://www.pigeor.pl/media/js/kcfinder/upload/files/Kierunki-Rozwoju-Biogazowni-Rolniczych-w-Polsce-na-lata-2010-2020.pdf (accessed on 3 September 2019).
- Act on Renewable Sources of Energy (“RES Act”), Act of 20 February 2015, Journal of Laws 2015 Item 478 as Amended. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20150000478 (accessed on 14 June 2019).
- Marks, S.; Dach, J.; Fernandez-Morales, F.J.; Mazurkiewicz, J.; Pochwatka, P.; Gierz, Ł. New Trends in Substrates and Biogas Systems in Poland. J. Ecol. Eng. 2020, 21, 19–25. [Google Scholar] [CrossRef]
- Ministry of State Assets. National Energy and Climate Plan for the Years 2021–2030. 2019. Available online: https://www.gov.pl/attachment/df8c4c37-808c-44ff-9278-676fb94add88 (accessed on 5 May 2020).
- Ministry of Energy. Energy Policy of Poland until 2040. 2019; p. 84. Available online: https://www.gov.pl/web/aktywa-panstwowe/zaktualizowany-projekt-polityki-energetycznej-polski-do-2040-r (accessed on 5 May 2020).
- Sun, B.; Zhou, B.; Bóna, A.; Pevzner, R.L. Feasibility analysis of drill bit tracking using seismic while drilling technique. ASEG Ext. Abstr. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- FNR. Guide to Biogas, from Production to Use; Fachagentur Nachwachsende Rohstoffe e.V.: Gülzow, Germany, 2012; p. 232. Available online: https://mediathek.fnr.de/media/downloadable/files/samples/g/u/guide_biogas_engl_2012.pdf (accessed on 3 September 2019).
- Piwowar, A.; Dzikuć, M.; Adamczyk, J. Agricultural biogas plants in Poland-selected technological, market and environmental aspects. Renew. Sustain. Energy Rev. 2016, 58, 69–74. [Google Scholar] [CrossRef]
- Pudełko, R.; Borzecka-Walker, M.; Faber, A. The Feedstock Potential Assessment for EU-27 + Switzerland in NUTS-3. Deliverable 1.2, Biomass Based Energy Intermediates Boosting Biofuel Production (FP7 Project). Available online: http://bioboost.eu/uploads/files/bioboost_d1.2_iung_feedstock_potential_vers1_0-final.pdf; 2013 (accessed on 3 September 2019).
- European Commission (EC). The EU Nitrates Directive (No. KH-30-09-235-EN-D). European Union 2010. Volume KH-30-09-235-EN-D. Available online: http://ec.europa.eu/environment/pubs/pdf/factsheets/nitrates.pdf (accessed on 3 September 2019).
- KOWR. Register of Agricultural Biogas Producers; KOWR: Warsaw, Poland, 2019; p. 7. Available online: http://www.kowr.gov.pl/uploads/pliki/oze/biogaz/Rejestr_wytw%C3%B3rc%C3%B3w_biogazu_rolniczego_z_dnia_19.02.2019_r.pdf (accessed on 3 September 2019).
- Eurostat, E.C. Glossary: Livestock Unit (LSU). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit (accessed on 14 June 2018).
- Sorda, G.; Sunak, Y.; Madlener, R. An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany. Ecol. Econ. 2013, 89, 43–60. [Google Scholar] [CrossRef]
- ARMA. Database for the Agency for Restructuring and Modernisation of Agriculture (ARMA); Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB): Puławy, Poland, 2016. [Google Scholar]
- Polish Federation of Cattle Breeders and Dairy Farmers (PFCBDF). Assessment and Breeding of Dairy Cattle; PFCBDF: Warsaw, Poland, 2016. (In Polish) [Google Scholar]
- Borkowska, D.; Januś, E.; Polski, R. Reduction in body condition of cows after calving and their lactation yield. Acta Sci. Pol. Zootech. 2016, 15, 43–52. [Google Scholar] [CrossRef]
- Velthof, G.L.; Selenius, J. Agri-Environmental Indicators: Recommendations for Priority Data Collection and Data Combination; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Tujaka, A.; Terelak, H. The balance of phosphorus in the agriculture of Poland. Pol. J. Agron. 2012, 9, 29–33. [Google Scholar]
- Nennich, T.; Harrison, J.H.; Meyer, D.; Weiss, W.P.; Heinrichs, A.J.; Kincaid, R.L.; Powers, W.J.; Koelsch, R.K.; Wright, A.P.E. Development of standard methods to estimate manure production and nutrient characteristics from dairy cattle. Anim. Agric. Food Process. Wastes IX 2013, 1. [Google Scholar] [CrossRef]
- Kopiński, J.; Tujaka, A.; Igras, J. Nitrogen and phosphorus budgets in Poland as a tool for sustainable nutrients management. Acta Agric. Slov. 2006, 87, 173–181. [Google Scholar]
- ASABE. Manure Production and Characteristics; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2014; Volume D384.2 MAR2005 (R2014). [Google Scholar]
- Jørgensen, P.J. Biogas-Green Energy: Process, Design, Energy Supply, Environment. 8799224321; Researcher for a Day 2009. Available online: https://www.lemvigbiogas.com/BiogasPJJuk.pdf (accessed on 3 September 2019).
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; Al Seadi, T., Ed.; University of Southern Denmark: Esbjerg, Denmark, 2008. [Google Scholar]
- Sánchez, M.; González, J. The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour. Technol. 2005, 96, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.G.; Petersen, S.; Møller, H. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutr. Cycl. Agroecosyst. 2004, 69, 143–154. [Google Scholar] [CrossRef]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Bonifacio, H.F.; Coiner, C.U. Integrated Farm System Model, Reference Manual; USDA-Agricultural Research Service: Beltsville, MD, USA, 2016; Version 4.3. [Google Scholar]
- Lansche, J.; Muller, J.D. Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Eng. Life Sci. 2012, 12, 313–320. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Akram, A.; Keyhani, A.; Van Zelm, R. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran—a case study of Alborz province. Environ. Sci. Pollut. Res. 2017, 24, 16041–16049. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Ecoinvent3.3. Ecoinvent®Swiss Center for Life Cycle Inventories. Available online: http://www.ecoinvent.org/database/ecoinvent-33/ecoinvent-33.html (accessed on 6 June 2018).
- Pardo, G.; Moral, R.; Del Prado, A. SIMSWASTE-AD—A modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. Sci. Total Environ. 2017, 574, 806–817. [Google Scholar] [CrossRef]
- Hou, Y. Towards Improving the Manure Management Chain. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Dong, H.; Mangino, J.; McAllister, T.; Hatfield, J.; Johnson, D.; Lassey, K.; de Lima, M.; Romanovskaya, A. Chapter 10: Emissions from livestock and manure management. In IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4; Technical Report 4-88788-032-4; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Pishgar-Komleh, S.; Akram, A.; Keyhani, A.; Raei, M.; Elshout, P.; Huijbregts, M.; Van Zelm, R. Variability in the carbon footprint of open-field tomato production in Iran—A case study of Alborz and East-Azerbaijan provinces. J. Clean. Prod. 2017, 142, 1510–1517. [Google Scholar] [CrossRef]
- De Klein, C.; Novoa, R.; Ogle, S.; Smith, K.; Rochette, P.; Wirth, T.; McConkey, B.; Mosier, A.; Rypdal, K. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4; Technical Report 4-88788-032-4; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006. [Google Scholar]
- Frey, J.; Grüssing, F.; Nägele, H.-J.; Oechsner, H. Cutting the electric power consumption of biogas plants: The impact of new technologies. Landtechnik 2013, 68, 58–63. [Google Scholar]
- Sefeedpari, P.; Vellinga, T.; Rafiee, S.; Sharifi, M.; Shine, P.; Pishgar-Komleh, S.H. Technical, environmental and cost-benefit assessment of manure management chain: A case study of large scale dairy farming. J. Clean. Prod. 2019, 233, 857–868. [Google Scholar] [CrossRef]
- FAO. Guidelines to Mitigate the Impact of the COVID-19 Pandemic on Livestock Production and Animal Health. 2020. Available online: http://www.fao.org/3/ca9177en/CA9177EN.pdf (accessed on 6 September 2020).
- Chadwick, D.R.; Wei, J.; Yan’An, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F.; Monforti, F.; Motola, V. A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 2018, 94, 915–930. [Google Scholar] [CrossRef]
- Batzias, F.; Sidiras, D.; Spyrou, E. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Tauro, R.; García, C.A.; Skutsch, M.; Masera, O.R. The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renew. Sustain. Energy Rev. 2018, 82, 380–389. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Wochele-Marx, S.; Thrän, D. RELCA: A REgional Life Cycle inventory for Assessing bioenergy systems within a region. Energy Sustain. Soc. 2016, 6, 265. [Google Scholar] [CrossRef] [Green Version]
- Hamelin, L.; Wesnæs, M.; Wenzel, H.; Petersen, B.M. Environmental Consequences of Future Biogas Technologies Based on Separated Slurry. Environ. Sci. Technol. 2011, 45, 5869–5877. [Google Scholar] [CrossRef]
- Pellerin, S.; Bamière, L.; Angers, D.; Béline, F.; Benoit, M.; Butault, J.-P.; Chenu, C.; Colnenne-David, C.; De Cara, S.; Delame, N.; et al. Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environ. Sci. Policy 2017, 77, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Pellervo, K.; Lehtonen, H.; Rintamäki, H.; Oostra, H. Economics of Manure Logistics, Separation and Land Application; Knowledge Report; Baltic Forum for Innovative Technologies for Sustainable Manure Management; 2013; p. 33. Available online: https://core.ac.uk/download/pdf/52249098.pdf (accessed on 14 June 2018).
- Yazan, D.M.; Fraccascia, L.; Mes, M.; Zijm, H. Cooperation in manure-based biogas production networks: An agent-based modeling approach. Appl. Energy 2018, 212, 820–833. [Google Scholar] [CrossRef]
Item | Unit | Value | Reference |
---|---|---|---|
Total No. of farms 1 | (-) | 57,761 | [27] |
Total No. of cattle | LSU | 290,195.7 | [27] |
Average number of cattle | LSU (NUTS5)−1 (LSU farm−1) | 1375.3 (3.9) | [27] |
Stocking rate | LSU ha−1 | 0.53 | [27] |
Herd structure (lactating, dry, and heifer) | % of heads | 40, 10, 50 | Assumption |
Milk yield | kg d−1 | 26 | [28] |
Milk fat (MF) | g (g milk)−1 | 0.04 | [28,29] |
Milk protein (MP) | g (g milk)−1 | 0.03 | [28,29] |
Body weight (BW) | kg | 680; 650; 408 | [28] |
Days in milking (DIM) | d | 300 | [28] |
Dry period (DP) | d | 65 | [28] |
Dry matter intake (lactating, dry and heifer) (DMI) | kg d−1 | 18.5; 13.13; 7.1 | [28] |
Equations | No. |
---|---|
(1) | |
(2) | |
(3) | |
(4) | |
(5) |
Equations | No. |
---|---|
(6) | |
(7) | |
(8) | |
(9) | |
(10) | |
(11) |
Item | Unit | Values | Reference |
---|---|---|---|
Total No. of farms 1 | (-) | 33,188 | [27] |
Total No. of pigs | LSU | 89,144 | [27] |
Average number of pig | LSU (NUTS5)−1 (LSU farm−1) | 422.5 (1.2) | [27] |
Stocking rate | LSU ha−1 | 0.18 | [27] |
Manure excretion (ME.P) | kg head−1 d−1 | 43.5 | [34,35,36] |
Total solids (TS) | % ME.P | 6.0 | [34,35,36] |
Volatile solid (VS) | % TS | 0.8 | [35,36] |
Total nitrogen (NE.P) | g (LSU)−1 d−1 | 3.7 | [34,37] |
Total phosphorus (PE.P) | g (LSU)−1 d−1 | 0.8 | [34,37] |
Equations | No. |
---|---|
(12) | |
(13) | |
(14) | |
(15) | |
(16) |
Equations | No. |
---|---|
(18) | |
(19) |
Equations | No. |
---|---|
(20) | |
(21) | |
(22) | |
(23) |
Unit | Cattle | Pig | Total | |
---|---|---|---|---|
Animal population | LSU | 290,195.69 | 89,144.02 | 379,339.71 |
Utilized agricultural area | ha | 534,241.65 | ||
Stocking rate | LSU ha−1 | 0.54 | 0.17 | 0.71 |
Manure potential | Mt | 6.14 | 1.41 | 7.56 |
Nitrogen | Mt | 0.028 | 0.005 | 0.034 |
Phosphorus | Mt | 0.01 | 0.001 | 0.011 |
Total solids | Mt | 0.61 | 0.08 | 0.69 |
Volatile solids | Mt | 0.52 | 0.07 | 0.59 |
Outputs | Unit | Scenario with AD |
---|---|---|
Theoretical energy | PJ | 6.86 |
Biogas | Mm3 | 377.9 |
CH4 | Mm3 | 245.7 |
Electricity | GWh | 907.0 |
Heat | GWh | 997.8 |
Organic fertilizer | Mt | 7.03 |
Nitrogen | Mt | 0.03 |
Phosphorus | Mt | 0.01 |
Emission Source | Unit | Emissions | Avoided Emissions | |||||
---|---|---|---|---|---|---|---|---|
BC | AD | AD + Sep | Surplus + AD | AD | AD + Sep | Surplus + AD | ||
Methane leakage | Mt CO2 eq | 0 | 0.05 | 0.05 | 0.01 | 0.05 | 0.05 | 0.01 |
Manure application | Mt CO2 eq | 0.20 | 0.19 | 0.06 | 0.31 | −0.01 * | −0.14 | 0.11 |
Avoided electricity | Mt CO2 eq | 0 | −0.82 | −0.82 | −0.16 | −0.82 | −0.82 | −0.16 |
Total | Mt CO2 eq | −0.78 | −0.91 | −0.04 | ||||
Ranking | 2 | 1 | 3 |
Sources of Cost | Unit | Quantity Flows | Avoided Costs (M EUR) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC | AD | AD + Sep | Surplus + AD | AD | AD + Sep | Surplus + AD | |||||
from | to | from | to | from | to | from | |||||
Fertilization | Mt | 7.56 | - | 7.03 | - | 1.05 | 6.07 | 1.38 | 0.61 | 7.48 | 5.39 |
Electricity | GWh | 0 | - | 907.1 | - | 907.1 | - | 178.3 | −35.47 ** | −35.47 | −6.97 |
Transport * | Mt | 7.56 | 7.56 | 7.03 | 7.56 | 1.05 | 7.56 | 1.49 | −0.01 | −0.15 | −0.11 |
Total | M EUR | −34.87 | −28.14 | −1.69 | |||||||
Ranking | 1 | 2 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sefeedpari, P.; Pudełko, R.; Jędrejek, A.; Kozak, M.; Borzęcka, M. To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland. Energies 2020, 13, 6266. https://doi.org/10.3390/en13236266
Sefeedpari P, Pudełko R, Jędrejek A, Kozak M, Borzęcka M. To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland. Energies. 2020; 13(23):6266. https://doi.org/10.3390/en13236266
Chicago/Turabian StyleSefeedpari, Paria, Rafał Pudełko, Anna Jędrejek, Małgorzata Kozak, and Magdalena Borzęcka. 2020. "To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland" Energies 13, no. 23: 6266. https://doi.org/10.3390/en13236266
APA StyleSefeedpari, P., Pudełko, R., Jędrejek, A., Kozak, M., & Borzęcka, M. (2020). To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland. Energies, 13(23), 6266. https://doi.org/10.3390/en13236266