Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM
Abstract
:1. Introduction
2. Sensorless Control Model Based on Conventional Sliding Mode Observer
2.1. State Space Equation of the IPMSM
2.2. Models of the Conventional Sliding Mode Observer
2.3. Sliding Mode Control Function
2.4. Stability Analysis of the CSMO
2.5. Rotor Position and Speed Estimation Based on Phase Locked Loop
3. Sliding Mode Observer Based on Super Twisting Algorithm
3.1. Models of the STA-SMO
3.2. Sliding Mode Control Function
3.3. Stability Analysis of the STA-SMO
4. Adaptive Parameters Estimation Control
4.1. Impact Analysis of Parameters Mismatch of the IPMSM
4.2. STA-SMO with Adaptive Parameters Estimation Control
5. System Simulation Experiment
6. Experimental Verification
7. Results and Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lyu, M.; Wu, G.; Luo, D.; Rong, F.; Huang, S. Robust Nonlinear Predictive Current Control Techniques for PMSM. Energies 2019, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Andreescu, G.D.; Pitic, C.; Blaabjerg, F.; Boldea, I. Combined Flux Observer with Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives. IEEE Trans. Energy Convers. 2008, 23, 393–402. [Google Scholar] [CrossRef]
- Yin, Z.; Li, G.; Zhang, Y.; Liu, J. Symmetric-Strong-Tracking-Extended-Kalman-Filter-Based Sensorless Control of Induction Motor Drives for Modeling Error Reduction. IEEE Trans. Ind. Inform. 2019, 15, 650–662. [Google Scholar] [CrossRef]
- Bhuyan, A.; Tudu, B.; Bandopadhyay, R.; Ghosh, A.; Kumar, S. Extended Kalman Filtering for Estimation of Parasitic Artifacts in Three Electrode Electrochemical Sensors. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Duan, P.H.; Duan, Z.H.; Lyu, Y.Z.; Chen, G. Distributed Finite-Horizon Extended Kalman Filtering for Uncertain Nonlinear Systems. IEEE Trans. Cybern. 2019, 2111–2115. [Google Scholar] [CrossRef]
- Gao, Q.; Asher, G.; Sumner, M. Sensorless Position and Speed Control of Induction Motors Using High-Frequency Injection and Without Offline Precommissioning. IEEE Trans. Ind. Electron. 2007, 54, 2474–2481. [Google Scholar] [CrossRef]
- Barut, M.; Bogosyan, S.; Gokasan, M. Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filters. IEEE Trans. Ind. Electron. 2007, 54, 272–280. [Google Scholar] [CrossRef]
- Holtz, J.; Quan, J. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. IEEE Trans. Ind. Appl. 2002, 38, 1087–1088. [Google Scholar] [CrossRef]
- Marko, H.; Jorma, L. Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design. IEEE Trans. Ind. Electr. 2004, 51, 1318–1319. [Google Scholar]
- Alessandri, A. Sliding-mode estimators for a class of non-linear systems affected by bounded disturbances. Int. J. Control 2003, 76, 226–236. [Google Scholar] [CrossRef]
- Xiong, Y.; Saif, M. Sliding mode observer for nonlinear uncertain systems. IEEE Trans. Autom. Control 2001, 46, 2012–2017. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z. Sliding-Mode Observer-Based Mechanical Parameter Estimation for Permanent Magnet Synchronous Motor. IEEE Trans. Power Electron. 2016, 31, 5732–5745. [Google Scholar] [CrossRef]
- Khayati, K. Multivariable Adaptive Sliding-Mode Observer-Based Control for Mechanical Systems Mode de glissement adaptatif etmulti-variable pour un contrôle basé sur un observateur pour les systèmes mécaniques. Can. J. Electr. Comput. Eng. 2015, 38, 253–254. [Google Scholar] [CrossRef]
- Sun, J.; Cao, G.-Z.; Huang, S.-D.; Peng, Y.; He, J.; Qian, Q.-Q. Sliding-Mode-Observer-Based Position Estimation for Sensorless Control of the Planar Switched Reluctance Motor. IEEE Access 2019, 7, 61034–61045. [Google Scholar] [CrossRef]
- Lin, C.; Sun, S.; Walker, P.; Zhang, N. Accelerated Adaptive Second Order Super-Twisting Sliding Mode Observer. IEEE Access 2019, 7, 25232–25238. [Google Scholar] [CrossRef]
- Liu, C.; Cai, G.; Gao, J.; Yang, D. Design of Nonlinear Robust Damping Controller for Power Oscillations Suppressing Based on Backstepping-Fractional Order Sliding Mode. Energies 2017, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Zhang, G.; Ouyang, H.; Mei, L. An Adaptive Super Twisting Nonlinear Fractional Order PID Sliding Mode Control of Permanent Magnet Synchronous Motor Speed Regulation System Based on Extended State Observer. IEEE Access 2020, 8, 53498–53510. [Google Scholar] [CrossRef]
- Yang, Z.B.; Zhang, D.; Sun, X.D.; Ye, X. Adaptive Exponential Sliding Mode Control for a Bearingless Induction Motor Based on a Disturbance Observer. IEEE Access 2018, 6, 35425–35426. [Google Scholar] [CrossRef]
- Sun, X.; Chen, L.; Yang, Z. Overview of Bearingless Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2013, 60, 5528–5538. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Yu, X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electr. 2013, 60, 160–161. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, C.; Yu, Y.; Liu, X. Adaptive Sliding Mode Trajectory Tracking Control for WMR Considering Skidding and Slipping via Extended State Observer. Energies 2019, 12, 3305. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.L.; Li, J.; Qu, R.H. Adaptive Second Order Sliding Mode Observer for PMSM Sensorless Control Considering VSI Nonlinearity. IEEE Trans. Power Electr. 2018, 33, 8994–9000. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, S.; Xiao, Y.; Wang, L. Sensorless Vector Control of Permanent Magnet Synchronous Linear Motor Based on Self-Adaptive Super-Twisting Sliding Mode Controller. IEEE Access 2019, 7, 44998–45000. [Google Scholar] [CrossRef]
- Wang, H.; Ge, X.; Liu, Y.-C. Second-Order Sliding-Mode MRAS Observer-Based Sensorless Vector Control of Linear Induction Motor Drives for Medium-Low Speed Maglev Applications. IEEE Trans. Ind. Electron. 2018, 65, 9938–9952. [Google Scholar] [CrossRef]
- Davila, J.; Fridman, L.; Levant, A. Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 2005, 50, 1785–1789. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Z.; Wang, D.; Lu, K.; Wu, D.; Ji, K.; Guo, L. A New Load Torque Identification Sliding Mode Observer for Permanent Magnet Synchronous Machine Drive System. IEEE Trans. Power Electron. 2019, 34, 7852–7862. [Google Scholar] [CrossRef]
- Liang, D.L.; Li, J.; Qu, R.H. Sensorless Control of Permanent Magnet Synchronous Machine Based on Second-Order Sliding-Mode Observer with Online Resistance Estimation. IEEE Trans. Ind. Appl. 2017, 53, 3672–3673. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, J.; Liu, H.; Li, B.; Kong, W. Second-Order Sliding-Mode Observer with Online Parameter Identification for Sensorless Induction Motor Drives. IEEE Trans. Ind. Electron. 2014, 61, 5280–5289. [Google Scholar] [CrossRef]
- Qiao, Z.; Shi, T.; Wang, Y.; Yan, Y.; Shi, T.; He, X. New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor. IEEE Trans. Ind. Electron. 2013, 60, 710–719. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Liu, H.; Xu, D. A Disturbance Rejection Control Strategy for Droop-Controlled Inverter Based on Super-Twisting Algorithm. IEEE Access 2019, 7, 27037–27046. [Google Scholar] [CrossRef]
- Lin, C.; Sun, S.X.; Yi, J.; Walker, P.; Zhang, N. Accelerated adaptive super twisting sliding mode observer-based drive shaft torque estimation for electric vehicle with automated manual transmission. IET Intell. Transp. Syst. 2019, 13, 160–162. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rated power/(kW) | 5 |
Rated speed/(r/min) | 2500 |
Moment of inertia/(kg·m2) | 0.06 |
Friction coefficient/(N·m·s) | 0.008 |
Polar logarithm | 4 |
Permanent magnet flux linkage/(Wb) | 0.071 |
Stator inductance Ld/(mH) | 0.22 |
Stator inductance Lq/(mH) | 0.61 |
Stator resistance/(Ω) | 0.03 |
Parameter | Value |
---|---|
Kp | 30 |
Ki | 450 |
k1 | 13 |
k2 | 270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fang, J.; Tan, K.; Huang, B.; He, W. Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM. Energies 2020, 13, 5991. https://doi.org/10.3390/en13225991
Liu Y, Fang J, Tan K, Huang B, He W. Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM. Energies. 2020; 13(22):5991. https://doi.org/10.3390/en13225991
Chicago/Turabian StyleLiu, Yubo, Junlong Fang, Kezhu Tan, Boyan Huang, and Wenshuai He. 2020. "Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM" Energies 13, no. 22: 5991. https://doi.org/10.3390/en13225991
APA StyleLiu, Y., Fang, J., Tan, K., Huang, B., & He, W. (2020). Sliding Mode Observer with Adaptive Parameter Estimation for Sensorless Control of IPMSM. Energies, 13(22), 5991. https://doi.org/10.3390/en13225991