Next Article in Journal
Does the Level of Absorptive Capacity Matter for Carbon Intensity? Evidence from the USA and China
Previous Article in Journal
Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide
Open AccessArticle

Adapting the Powered Roof Support to Diverse Mining and Geological Conditions

1
Center of Hydraulics DOH Ltd., 41-906 Bytom, Poland
2
Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
*
Author to whom correspondence should be addressed.
Energies 2020, 13(2), 405; https://doi.org/10.3390/en13020405
Received: 8 December 2019 / Revised: 6 January 2020 / Accepted: 10 January 2020 / Published: 14 January 2020
(This article belongs to the Section Energy Sources)
A powered roof support is one of the most important machines of a longwall system. Its basic task is to ensure the safety and continuity of the mining process. The conditions of coal mining process are constantly changing and have significantly deteriorated in recent years, which in turn has also resulted in a significant increase in the requirements for mining support. As a result, it is necessary to develop an appropriate methodology that will facilitate the design and testing process of a power roof support as well as will help to select a roof support adjusted to given conditions. The article presents such a methodology. It is based on forecasted load impacting on a roof support, tests covering selected systems and elements of the section as well as legal conditions regarding the admission of the roof support to operation. This idea was developed in the form of a procedure that, by combining the three areas, should support the decision-making process in the case of different underground conditions. In terms of the expected load impacting on the support, the research team identified the most dangerous phenomena occurring in the rock mass that can generate these loads. Stand tests included impact load and permanent clamping of an excavation. The element that significantly impacts the safety of the support operation is a hydraulic leg, and therefore it was tested together with the safety system and the control system. Model tests were also carried out for the system with a safety valve. The developed concept takes into account legal conditions, which should include test results and different support operating conditions in a more flexible way. The main purpose of the work was to develop a comprehensive methodology for testing and assessing the possibility of using a powered roof support for given mining and geological conditions based on an analysis of safety and control systems. The presented approach is undoubtedly new and original, and can be widely used. It enables better adaptation of the support to given conditions. It also fits the research and activities designed to minimize the presence of miners or service workers in hazardous underground exploitation zones and to improve efficiency and boost sustainable development of the mining industry. View Full-Text
Keywords: powered roof support; stand tests; model tests; control system; CFD powered roof support; stand tests; model tests; control system; CFD
Show Figures

Figure 1

MDPI and ACS Style

Szurgacz, D.; Brodny, J. Adapting the Powered Roof Support to Diverse Mining and Geological Conditions. Energies 2020, 13, 405.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop