Estimation and Mapping of Solar Irradiance for Korea by Using COMS MI Satellite Images and an Artificial Neural Network Model
Abstract
:1. Introduction
2. Study Area and Data Collection
3. Methodology
3.1. Data Preprocessing
3.2. Design of ANN
3.3. Determination of ANN Parameters
3.4. Validation of ANN Applicability
3.5. Solar Irradiance Mapping
4. Construction of ANN model
5. Validation of ANN for Solar Mapping
5.1. Temporal Validation
5.2. Spatial Validation
6. Application of Final ANN model
6.1. Final ANN Model
6.2. Solar Irradiance Map
6.3. Significance and Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.-M.; Oh, M.; Park, H.-D. Analysis and Prioritization of the Floating Photovoltaic System Potential for Reservoirs in Korea. Appl. Sci. 2019, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Şen, Z.; Şahin, A.D. Spatial interpolation and estimation of solar irradiation by cumulative semivariograms. Sol. Energy 2001, 71, 11–21. [Google Scholar] [CrossRef]
- Bezzi, M.; Vitti, A. A comparison of some kriging interpolation methods for the production of solar radiation maps. Geomat. Work 2005, 5, 1–17. [Google Scholar]
- Palmer, D.; Cole, I.; Betts, T.; Gottschalg, R. Interpolating and estimating horizontal diffuse solar irradiation to provide UK-wide coverage: Selection of the best performing models. Energies 2017, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Jamaly, M.; Kleissl, J. Spatiotemporal interpolation and forecast of irradiance data using Kriging. Sol. Energy 2017, 158, 407–423. [Google Scholar] [CrossRef]
- Yang, D.; Gu, C.; Dong, Z.; Jirutitijaroen, P.; Chen, N.; Walsh, W.M. Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging. Renew. Energy 2013, 60, 235–245. [Google Scholar] [CrossRef]
- Journée, M.; Bertrand, C. Improving the spatio-temporal distribution of surface solar radiation data by merging ground and satellite measurements. Remote Sens. Environ. 2010, 114, 2692–2704. [Google Scholar] [CrossRef]
- Dev, S.; Sanoy, F.M.; Lee, Y.H.; Winkler, S. Estimating solar irradiance using sky imagers. Atmos. Meas. Tech. 2019, 12, 5417–5429. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Montesinos, J.; Batlles, F.J. The use of a sky camera for solar radiation estimation based on digital image processing. Energy 2015, 90, 377–386. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images. Energy Convers. Manag. 2015, 105, 1166–1177. [Google Scholar] [CrossRef]
- Noia, M.; Ratto, C.F.; Festa, R. Solar Irradiance Estimation From Geostationary Satellite Data: 1. Statistical Models. Sol. Energy 1993, 51, 449–456. [Google Scholar] [CrossRef]
- Noia, M.; Ratto, C.F.; Festa, R. Solar Irradiance Estimation From Geostationary Satellite Data: 2. Physical Models. Sol. Energy 1993, 51, 457–465. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Moore, K.; Kmiecik, M.; Chain, C.; George, R.A.Y.; Vignola, F. A New Operational Model for Satellite-derived Irradiances: Description and Validation. Sol. Energy 2002, 73, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Rigollier, C.; Lef, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.S.; Song, A.R.; Kim, Y. Il Solar Irradiance Estimation in Korea by Using Modified Heliosat-II Method and COMS-MI Imagery. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 33, 463–472. [Google Scholar]
- Linares-Rodriguez, A.; Ruiz-Arias, J.A.; Pozo-Vazquez, D.; Tovar-Pescador, J. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 2013, 61, 636–645. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Eissa, Y.; Marpu, P.R.; Gherboudj, I.; Ghedira, H.; Ouarda, T.B.M.J.; Chiesa, M. Artificial neural network based model for retrieval of the direct normal, diffuse horizontal and global horizontal irradiances using SEVIRI images. Sol. Energy 2013, 89, 1–16. [Google Scholar] [CrossRef]
- Alobaidi, M.H.; Marpu, P.R.; Ouarda, T.B.M.J.; Ghedira, H. Mapping of the solar irradiance in the UAE using advanced artificial neural network ensemble. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3668–3680. [Google Scholar] [CrossRef]
- Quesada-Ruiz, S.; Linares-Rodríguez, A.; Ruiz-Arias, J.A.; Pozo-Vazquez, D.; Tovar-Pescador, J. ScienceDirect An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery. Sol. Energy 2015, 115, 494–504. [Google Scholar] [CrossRef]
- Ameen, B.; Balzter, H.; Jarvis, C.; Wheeler, J. Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks. Energies 2019, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Marquez, R.; Pedro, H.T.C.; Coimbra, C.F.M. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Sol. Energy 2013, 92, 176–188. [Google Scholar] [CrossRef]
- Yeom, J.; Han, K.; Kim, J. Evaluation on Penetration Rate of Cloud for Incoming Solar Radiation Using Geostationary Satellite Data. Asia Pac. J. Atmos. Sci. 2012, 48, 115–123. [Google Scholar] [CrossRef]
- Kawamura, H.; Tanahashi, S.; Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku Coast. J. Oceanogr. 1998, 54, 457–464. [Google Scholar] [CrossRef]
- Zo, I.; Jee, J.; Lee, K. Development of GWNU ( Gangneung-Wonju National University ) One-Layer Transfer Model for Calculation of Solar Radiation Distribution of the Korean Peninsula. Asia Pac. J. Atmos. Sci. 2014, 50, 23–32. [Google Scholar] [CrossRef]
- Zo, I.; Jee, J.; Lee, K.; Kim, B. Analysis of Solar Radiation on the Surface Estimated from GWNU Solar Radiation Model with Temporal Resolution of Satellite Cloud Fraction. Asia Pac. J. Atmos. Sci. 2016, 52, 405–412. [Google Scholar] [CrossRef]
- Yeom, J.; Seo, Y.; Kim, D.; Han, K. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE. J. Sens. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Kim, H.-G.; Kang, Y.-H.; Yun, C.-Y.; Lee, S.-N. Evaluation of Global Horizontal Irradiance Derived from CLAVR-x Model and COMS Imagery Over the Korean Peninsula. New Renew. Energy 2016, 12, 13–20. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, H.G.; Kang, Y.H.; Yun, C.Y. Toward Improved Solar Irradiance Forecasts: Comparison of the Global Horizontal Irradiances Derived from the COMS Satellite Imagery Over the Korean Peninsula. Pure Appl. Geophys. 2017, 174, 2773–2792. [Google Scholar] [CrossRef]
- Yeom, J.; Han, K. Computers & Geosciences Improved estimation of surface solar insolation using a neural network and MTSAT-1R data. Comput. Geosci. 2010, 36, 590–597. [Google Scholar]
- Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data Preprocessing and Intelligent Data Analysis. Intell. Data Anal. 1997, 1, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Hammer, A.; Heinemann, D.; Hoyer, C.; Kuhlemann, R.; Lorenz, E.; Müller, R.; Beyer, H.G. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 2003, 86, 423–432. [Google Scholar] [CrossRef]
- Eissa, Y.; Chiesa, M.; Ghedira, H. Assessment and recalibration of the Heliosat-2 method in global horizontal irradiance modeling over the desert environment of the UAE. Sol. Energy 2012, 86, 1816–1825. [Google Scholar] [CrossRef]
- Kuzniar, K.; Zajac, M. Some methods of pre-processing input data for neural networks. Comput. Assist. Methods Eng. Sci. 2015, 22, 141–151. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 0470873663. [Google Scholar]
- Marquez, R.; Coimbra, C.F.M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol. Energy 2011, 85, 746–756. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780131471399. [Google Scholar]
- Yousif, J.H.; Kazem, H.A.; Alattar, N.N.; Elhassan, I.I. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Stud. Therm. Eng. 2019, 13, 1–13. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Elaziz, M.A.; Kabeel, A.E.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H. Neural Network Design; PWS Publishing: Boston, MA, USA, 1996. [Google Scholar]
- Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Linares-Rodríguez, A.; Ruiz-Arias, J.A.; Pozo-Vázquez, D.; Tovar-Pescador, J. Generation of synthetic daily global solar radiation data based on ERA-Interim reanalysis and artificial neural networks. Energy 2011, 36, 5356–5365. [Google Scholar] [CrossRef]
- Nait Mensour, O.; Bouaddi, S.; Abnay, B.; Hlimi, B.; Ihlal, A. Mapping and Estimation of Monthly Global Solar Irradiation in Different Zones in Souss-Massa Area, Morocco, Using Artificial Neural Networks. Int. J. Photoenergy 2017, 2017, 1–19. [Google Scholar] [CrossRef]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Warren, S.G. Optical Properties of Snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Xia, S.; Mestas-Nuñez, A.M.; Xie, H.; Vega, R. Satellite-based cloudiness and solar energy potential in Texas and surrounding regions. Remote Sens. 2019, 11, 1130. [Google Scholar] [CrossRef] [Green Version]
- López, G.; Gueymard, C.A.; Bosch, J.L.; Rapp-Arrarás, I.; Joaquín, A.-M.; Pulido-Calvo, I.; Ballestrín, J.; Polo, J.; Barbero, J. Modeling water vapor impacts on the solar irradiance reaching the receiver of a solar tower plant by means of artificial neural networks. Sol. Energy 2018, 169, 34–39. [Google Scholar] [CrossRef]
- Oh, M.; Park, H. A new algorithm using a pyramid dataset for calculating shadowing in solar potential mapping. Renew. Energy 2018, 126, 465–474. [Google Scholar] [CrossRef]
Method | Satellite Data Sources | Accuracy (RMSE) | References | |
---|---|---|---|---|
Clear | Cloudy | |||
Physical | MTSAT-1R | - | [23] | |
Physical | MTSAT-2, MODIS, OMI | - | [25] | |
Physical | COMS | 85.53 W/m2 | [26] | |
Physical | COMS, GLOBE DEM | 106.94 W/m2 | 72.49 W/m2 | [27] |
Physical | COMS | 65.1 W/m2 | 149.8 W/m2 | [28] |
Physical | COMS | 45.6 W/m2 | 96.9 W/m2 | [29] |
Empirical | COMS | 30.8% | [15] | |
ANN | MTSAT-1R | 44.86 W/m2 | 78.47 W/m2 | [30] |
Channel | Spatial Resolution | |
---|---|---|
Visible (VIS) | 0.67 | 1 km |
Shortwave infrared (SWIR) | 3.7 | 4 km |
Water vapor (WV) | 6.7 | 4 km |
Infrared 1 (IR1) | 10.8 | 4 km |
Infrared 2 (IR2) | 12.0 | 4 km |
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | 0.939 | 0.968 | 0.978 | 0.981 | 0.980 | 0.975 | 0.967 | 0.962 | 0.972 | 0.964 | 0.960 | 0.952 |
RMSE (W/m2) | 53.68 | 48.9 | 49.31 | 53.22 | 57.33 | 60.82 | 65.26 | 68.86 | 56.13 | 54.56 | 45.86 | 45.26 |
rRMSE (%) | 12.75 | 11.61 | 11.71 | 12.64 | 13.62 | 14.45 | 15.50 | 16.36 | 13.33 | 12.96 | 10.89 | 10.75 |
Sites | R | RMSE (W/m2) | RMSE (%) | ||
---|---|---|---|---|---|
Train | 1 | Gyeongju | 0.981 | 47.12 | 11.58 |
2 | Gwangyang | 0.982 | 47.98 | 10.91 | |
3 | Gwangju | 0.977 | 52.86 | 12.43 | |
4 | Daegwallyeong | 0.972 | 55.3 | 13.47 | |
5 | Busan | 0.98 | 49.98 | 12.13 | |
6 | Buk-Gangneung | 0.972 | 61.04 | 15.38 | |
7 | Seoul | 0.975 | 52.6 | 13.97 | |
8 | Sunchang | 0.976 | 71.15 | 15.07 | |
9 | Andong | 0.979 | 47.46 | 11.19 | |
10 | Yeonggwang | 0.979 | 56.44 | 12.81 | |
11 | Wonju | 0.968 | 60.48 | 14.52 | |
12 | Jeonju | 0.979 | 52.12 | 12.08 | |
13 | Jeju | 0.981 | 52.22 | 13.43 | |
14 | Changwon | 0.982 | 47.44 | 10.5 | |
15 | Cheognju | 0.977 | 48.35 | 12.28 | |
16 | Chupungnyeong | 0.979 | 48.52 | 11.68 | |
17 | Chuncheon | 0.978 | 50.4 | 13.07 | |
18 | Hongseong | 0.973 | 54.74 | 13.03 | |
19 | Heuksando | 0.973 | 61.42 | 14.9 | |
Average | 0.975 | 53.99 | 12.93 | ||
Test | 20 | Gangneung | 0.974 | 70.04 | 16.48 |
21 | Gochang-gun | 0.975 | 58.88 | 13.6 | |
22 | Daejeon | 0.974 | 77.54 | 16.86 | |
23 | Uiryeong | 0.976 | 56.12 | 12.99 | |
24 | Cheongsong | 0.974 | 56.09 | 13.55 | |
25 | Hamyang | 0.975 | 57.29 | 13.28 | |
Average | 0.972 | 63.33 | 14.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, Y.; Oh, M.; Kim, S.-M.; Park, H.-D. Estimation and Mapping of Solar Irradiance for Korea by Using COMS MI Satellite Images and an Artificial Neural Network Model. Energies 2020, 13, 301. https://doi.org/10.3390/en13020301
Koo Y, Oh M, Kim S-M, Park H-D. Estimation and Mapping of Solar Irradiance for Korea by Using COMS MI Satellite Images and an Artificial Neural Network Model. Energies. 2020; 13(2):301. https://doi.org/10.3390/en13020301
Chicago/Turabian StyleKoo, YoungHyun, Myeongchan Oh, Sung-Min Kim, and Hyeong-Dong Park. 2020. "Estimation and Mapping of Solar Irradiance for Korea by Using COMS MI Satellite Images and an Artificial Neural Network Model" Energies 13, no. 2: 301. https://doi.org/10.3390/en13020301