Next Article in Journal
Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants
Next Article in Special Issue
Performance Evaluation of Analytical Methods for Parameters Extraction of Photovoltaic Generators
Previous Article in Journal
Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture
Previous Article in Special Issue
A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator
Open AccessArticle

A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?

1
Department of Industrial Management and Technology, Technoeconomics of Energy Systems Laboratory (TEESlab), University of Piraeus (UNIPI), Karaoli & Dimitriou 80, 18534 Piraeus, Greece
2
School of Electrical and Computer Engineering, Decision Support Systems Laboratory (DSSLab), National Technical University of Athens, Iroon Politechniou 9, 15773 Athens, Greece
*
Author to whom correspondence should be addressed.
Energies 2020, 13(18), 4768; https://doi.org/10.3390/en13184768
Received: 16 July 2020 / Revised: 4 September 2020 / Accepted: 8 September 2020 / Published: 12 September 2020
(This article belongs to the Special Issue Renewable Energy and Energy Storage Systems)
Raising the penetration of renewable energy sources constitutes one of the main pillars of contemporary decarbonization strategies. Within this context, further progress is required towards the optimal exploitation of their potential, especially in terms of dispatchability, where the role of storage is considered vital. Although current literature delves into either storage per se or the integration of storage solutions in single renewable technologies, the comparative advantages of each technology remain underexplored. However, high-penetration solutions of renewable energy sources (RES) are expected to combine different technological options. Therefore, the conditions under which each technology outperforms their counterparts need to be thoroughly investigated, especially in cases where storage components are included. This paper aims to deal with this gap, by means of assessing the combination of three competing technologies, namely concentrated solar power (CSP), photovoltaics (PV) and offshore wind, with the storage component. The techno-economic assessment is based on two metrics; the levelized cost of electricity and the net present value. Considering the competition between the technologies and the impact storage may have, the paper’s scope lies in investigating the circumstances, under which CSP could have an advantage against comparable technologies. Overall, PVs combined with storage prevail, as the most feasible technological option in the examined storage scenarios—with an LCOE lower than 0.11 €/kWh. CSP LCOE ranged between 0.1327–0.1513 €/kWh for high capacity factors and investment costs, thus larger storage components. Offshore wind—with a lower storage component—had an LCOE of 0.1402 €/kWh. Thus, CSP presents the potential to outperform offshore wind in cases where the latter technology is coupled with high storage requirements. CSP can be viewed as one of the options that could support European Union (EU) decarbonization scenarios. As such, an appropriate market design that takes into consideration and values CSP characteristics, namely dispatchability, is needed at the EU level. View Full-Text
Keywords: renewable energy sources; concentrated solar power; photovoltaics; wind energy; offshore wind; techno-economic assessment; levelized cost of electricity; net present value; sensitivity analysis; energy storage renewable energy sources; concentrated solar power; photovoltaics; wind energy; offshore wind; techno-economic assessment; levelized cost of electricity; net present value; sensitivity analysis; energy storage
Show Figures

Figure 1

MDPI and ACS Style

Papadopoulou, A.G.; Vasileiou, G.; Flamos, A. A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power? Energies 2020, 13, 4768.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop