# Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- We propose two novel frequency control strategies that aim at minimizing the EVs battery degradation. Differently from the existing contributions, which only address the need for frequency regulation service, our approach proposes a battery degradation model while ensuring the stabilization of grid frequency.
- We propose a profitability analysis to correlate the profit obtained by the EV’s user in participating in the frequency regulation service and the cost incurred by the battery degradation. Hence, we compare the proposed frequency control strategies with other related techniques in terms of energy that is exchanged with the main grid and degradation of the battery. The results obtained through numerical experiments based on a realistic power system model show the better performance of the proposed mechanisms under the actual operating conditions with respect to the reference strategies.

## 2. Preliminaries on Frequency Regulation

## 3. EV Battery Model

## 4. V2G for Load Frequency Regulation

#### 4.1. Elementary Control (ElCo)

#### 4.2. Balance Control (BaCo)

#### 4.3. Smart Charging Control (SmChCo)

#### 4.4. Bounded Control (BoCo)

#### 4.5. Low Degradation Control (LoDeCo)

## 5. Case Study

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

RES | Renewable energy source |

EV | Electric vehicle |

V2G | vehicle-to-grid |

FDC | Frequency droop control |

EVB | Electric-vehicle battery |

ESS | Energy storage system |

BESS | Battery energy storage system |

SoC | State of charge |

DoD | Depth of discharge |

SG | Synchronous generator |

PV | Photovoltaic |

PFR | Primary frequency regulation |

SFR | Secondary frequency regulation |

TFR | Tertiary frequency regulation |

ElCo | Elementary Control |

BoCo | Bounded Control |

BaCo | Balance Control |

SmChCo | Smart Charging |

LoDeCo | Low Degradation Control |

## References

- Lawrenz, L.; Xiong, B.; Lorenz, L.; Krumm, A.; Hosenfeld, H.; Burandt, T.; Löffler, K.; Oei, P.Y.; Von Hirschhausen, C. Exploring energy pathways for the low-carbon transformation in India—A model-based analysis. Energies
**2018**, 11, 3001. [Google Scholar] [CrossRef] [Green Version] - Oureilidis, K.; Malamaki, K.N.; Gallos, K.; Tsitsimelis, A.; Dikaiakos, C.; Gkavanoudis, S.; Cvetkovic, M.; Mauricio, J.M.; Maza Ortega, J.M.; Ramos, J.L.M. Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers. Energies
**2020**, 13, 917. [Google Scholar] [CrossRef] [Green Version] - Eto, J.H.; Berkeley, L.; Undrill, J.; Mackin, P.; Daschmans, R.; Williams, B.; Haney, B.; Hunt, R.; Ellis, J.; Illian, H.; et al. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA, USA, 2010.
- Peng, C.; Zou, J.; Lian, L. Dispatching strategies of electric vehicles participating in frequency regulation on power grid: A review. Renew. Sustain. Energy Rev.
**2017**, 68, 147–152. [Google Scholar] [CrossRef] - Alsharafi, A.S.; Besheer, A.H.; Emara, H.M. Primary frequency response enhancement for future low inertia power systems using hybrid control technique. Energies
**2018**, 11, 699. [Google Scholar] [CrossRef] [Green Version] - Adrees, A.; Papadopoulos, P.N.; Milanovic, J.V. A framework to assess the effect of reduction in inertia on system frequency response. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Terna. 2020. Available online: https://www.terna.it/en (accessed on 16 July 2020).
- Lucchese, F.C.; Canha, L.N.; Brignol, W.S.; Hammerschmitt, B.K.; Da Silva, L.N.; Martins, C.C. Energy Storage Systems Role in Supporting Renewable Resources: Global Overview. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Zeh, A.; Müller, M.; Naumann, M.; Hesse, H.C.; Jossen, A.; Witzmann, R. Fundamentals of using battery energy storage systems to provide primary control reserves in Germany. Batteries
**2016**, 2, 29. [Google Scholar] [CrossRef] [Green Version] - Bellocchi, S.; Manno, M.; Noussan, M.; Vellini, M. Impact of grid-scale electricity storage and electric vehicles on renewable energy penetration: A case study for Italy. Energies
**2019**, 12, 1303. [Google Scholar] [CrossRef] [Green Version] - Hosseini, S.M.; Carli, R.; Cavone, G.; Dotoli, M. Distributed control of electric vehicle fleets considering grid congestion and battery degradation. Internet Technol. Lett.
**2020**, 3, e161. [Google Scholar] [CrossRef] [Green Version] - Boenzi, F.; Digiesi, S.; Facchini, F.; Mossa, G.; Mummolo, G. Sustainable warehouse logistics: A NIP model for non-road vehicles and storage configuration selection. In Proceedings of the XX Summer School Operational Excellence Experience “Francesco Turco”, Naples, Italy, 16–18 September 2015. [Google Scholar]
- Casalino, G.; Del Buono, N.; Mencar, C. Nonnegative matrix factorizations for intelligent data analysis. In Non-Negative Matrix Factorization Techniques; Springer: Berlin/Heidelberg, Germany, 2016; pp. 49–74. [Google Scholar]
- D’Amato, G.; Avitabile, G.; Coviello, G.; Talarico, C. DDS-PLL phase shifter architectures for phased arrays: Theory and techniques. IEEE Access
**2019**, 7, 19461–19470. [Google Scholar] [CrossRef] - Kotb, A.O.; Shen, Y.C.; Zhu, X.; Huang, Y. iParker—A new smart car-parking system based on dynamic resource allocation and pricing. IEEE Trans. Intell. Transp. Syst.
**2016**, 17, 2637–2647. [Google Scholar] [CrossRef] [Green Version] - Hosseini, S.S.; Badri, A.; Parvania, M. The plug-in electric vehicles for power system applications: The vehicle to grid (V2G) concept. In Proceedings of the 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy, 9–12 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1101–1106. [Google Scholar]
- Galus, M.D.; Koch, S.; Andersson, G. Provision of load frequency control by PHEVs, controllable loads, and a cogeneration unit. IEEE Trans. Ind. Electron.
**2011**, 58, 4568–4582. [Google Scholar] [CrossRef] - Datta, U.; Kalam, A.; Shi, J. Battery Energy Storage System for Aggregated Inertia-Droop Control and a Novel Frequency Dependent State-of-Charge Recovery. Energies
**2020**, 13, 2003. [Google Scholar] [CrossRef] [Green Version] - Kempton, W.; Udo, V.; Huber, K.; Komara, K.; Letendre, S.; Baker, S.; Brunner, D.; Pearre, N. A test of vehicle-to-grid (V2G) for energy storage and frequency regulation in the PJM system. Results Ind. Univ. Res. Partnersh.
**2008**, 32. [Google Scholar] - Jha, I.; Sen, S.; Tiwari, M.; Singh, M.K. Control strategy for Frequency Regulation using Battery Energy Storage with optimal utilization. In Proceedings of the 2014 IEEE 6th India International Conference on Power Electronics (IICPE), Kurukshetra, India, 8–10 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–4. [Google Scholar]
- Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE
**2010**, 99, 168–183. [Google Scholar] [CrossRef] [Green Version] - Brooks, A.; Lu, E.; Reicher, D.; Spirakis, C.; Weihl, B. Demand dispatch. IEEE Power Energy Mag.
**2010**, 8, 20–29. [Google Scholar] [CrossRef] - Oudalov, A.; Chartouni, D.; Ohler, C. Optimizing a battery energy storage system for primary frequency control. IEEE Trans. Power Syst.
**2007**, 22, 1259–1266. [Google Scholar] [CrossRef] - Peng, C.; Zou, J.; Lian, L.; Li, L. An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits. Appl. Energy
**2017**, 190, 591–599. [Google Scholar] [CrossRef] - Pillai, J.R.; Bak-Jensen, B. Integration of vehicle-to-grid in the western Danish power system. IEEE Trans. Sustain. Energy
**2011**, 2, 12–19. [Google Scholar] [CrossRef] - Masuta, T.; Yokoyama, A. Supplementary load frequency control by use of a number of both electric vehicles and heat pump water heaters. IEEE Trans. Smart Grid
**2012**, 3, 1253–1262. [Google Scholar] [CrossRef] - Liu, H.; Hu, Z.; Song, Y.; Lin, J. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands. IEEE Trans. Power Syst.
**2013**, 28, 3480–3489. [Google Scholar] [CrossRef] - Almeida, P.R.; Lopes, J.P.; Soares, F.; Seca, L. Electric vehicles participating in frequency control: Operating islanded systems with large penetration of renewable power sources. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Yang, J.; Zeng, Z.; Tang, Y.; Yan, J.; He, H.; Wu, Y. Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies
**2015**, 8, 2145–2164. [Google Scholar] [CrossRef] - Li, X.; Huang, Y.; Huang, J.; Tan, S.; Wang, M.; Xu, T.; Cheng, X. Modeling and control strategy of battery energy storage system for primary frequency regulation. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 543–549. [Google Scholar]
- Yang, J.S.; Choi, J.Y.; An, G.H.; Choi, Y.J.; Kim, M.H.; Won, D.J. Optimal scheduling and real-time state-of-charge management of energy storage system for frequency regulation. Energies
**2016**, 9, 1010. [Google Scholar] [CrossRef] - Ota, Y.; Taniguchi, H.; Nakajima, T.; Liyanage, K.M.; Baba, J.; Yokoyama, A. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging. IEEE Trans. Smart Grid
**2011**, 3, 559–564. [Google Scholar] [CrossRef] - Hernández, J.C.; Sanchez-Sutil, F.; Vidal, P.; Rus-Casas, C. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems. Int. J. Electr. Power Energy Syst.
**2018**, 100, 152–166. [Google Scholar] [CrossRef] - Vahedipour-Dahraie, M.; Rashidizaheh-Kermani, H.; Najafi, H.R.; Anvari-Moghaddam, A.; Guerrero, J.M. Coordination of EVs participation for load frequency control in isolated microgrids. Appl. Sci.
**2017**, 7, 539. [Google Scholar] [CrossRef] [Green Version] - Khooban, M.H.; Niknam, T.; Blaabjerg, F.; Dragičević, T. A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr. Power Syst. Res.
**2017**, 143, 585–598. [Google Scholar] [CrossRef] [Green Version] - Cam, E.; Gorel, G.; Mamur, H. Use of the genetic algorithm-based fuzzy logic controller for load-frequency control in a two area interconnected power system. Appl. Sci.
**2017**, 7, 308. [Google Scholar] [CrossRef] [Green Version] - Tchagang, A.; Yoo, Y. V2B/V2G on Energy Cost and Battery Degradation under Different Driving Scenarios, Peak Shaving, and Frequency Regulations. World Electr. Veh. J.
**2020**, 11, 14. [Google Scholar] [CrossRef] [Green Version] - Baure, G.; Dubarry, M. Durability and Reliability of EV Batteries under Electric Utility Grid Operations: Impact of Frequency Regulation Usage on Cell Degradation. Energies
**2020**, 13, 2494. [Google Scholar] [CrossRef] - Świerczyński, M.; Stroe, D.I.; Lærke, R.; Stan, A.I.; Kjær, P.C.; Teodorescu, R.; Kær, S.K. Field experience from Li-ion BESS delivering primary frequency regulation in the Danish energy market. Ecs Trans.
**2014**, 61, 1. [Google Scholar] [CrossRef] - Stroe, D.I.; Knap, V.; Swierczynski, M.; Stroe, A.I.; Teodorescu, R. Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective. IEEE Trans. Ind. Appl.
**2016**, 53, 430–438. [Google Scholar] [CrossRef] - Han, S.; Han, S. Economic feasibility of V2G frequency regulation in consideration of battery wear. Energies
**2013**, 6, 748–765. [Google Scholar] [CrossRef] [Green Version] - Kundur, P.; Balu, N.J.; Lauby, M.G. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994; Volume 7. [Google Scholar]
- Maheshwari, A.; Paterakis, N.G.; Santarelli, M.; Gibescu, M. Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl. Energy
**2020**, 261, 114360. [Google Scholar] [CrossRef] - Yan, G.; Liu, D.; Li, J.; Mu, G. A cost accounting method of the Li-ion battery energy storage system for frequency regulation considering the effect of life degradation. Prot. Control Mod. Power Syst.
**2018**, 3, 1–9. [Google Scholar] [CrossRef] - Yan, G.; Zhu, X.; Li, J.; Mu, G.; Luo, W.; Yang, K. Control strategy design for hybrid energy storage system with intrinsic operation life measurement and calculation. Dianli Xitong Zidonghua Automation Electr. Power Syst.
**2013**, 37, 110–114. [Google Scholar]

**Figure 1.**Discrepancy between forecasts and real demand in Italy: (

**a**) hourly profile of 1 March 2019; (

**b**) hourly profile from January 1st 2019 to December 31st 2019. Data from Italian transmission system operator (Terna) [7].

**Figure 2.**The subsequent effects of primary, secondary, and tertiary frequency regulation after an unexpected loss of generation.

**Figure 3.**Degradation of lithium-ion batteries as a function of subsequent SoC: surface plot (

**a**) and contour plot (

**b**).

**Figure 4.**(

**a**) ElCo: V2G power flow control scheme. (

**b**) BaCo: V2G frequency droop as a function of the SoC for the charging and discharging cases (the SoC is kept around 0.5 by using ${\mathrm{SoC}}_{i}^{\mathrm{max}}=0.9$, ${\mathrm{SoC}}_{i}^{\mathrm{min}}=0.1$, ${\mathrm{SoC}}_{i}^{\mathrm{high}}=0.8$ and ${\mathrm{SoC}}_{i}^{\mathrm{low}}=0.2$ [32]). (

**c**) SmChCo: V2G power flow control scheme [32].

**Figure 5.**V2G frequency droop as a function of the SoC for the charging and discharging cases for the BoCo approach (

**a**). V2G frequency droop as a function of the SoC for the charging and discharging cases for the LoDeCo approach (

**b**). V2G frequency droop as a function of the SoC for the LoDeCo for different $\tau $ values (

**c**).

**Figure 7.**Number of cycles of the battery with respect to the SoC profile for the five considered strategies: (

**a**) ElCo; (

**b**) BaCo; (

**c**) SmChCo; (

**d**) BoCo; and, (

**e**) LoDeCo.

**Figure 8.**Battery SoC profile for the five considered strategies: (

**a**) ElCo; (

**b**) BaCo; (

**c**) SmChCo; (

**d**) BoCo; (

**e**) LoDeCo.

**Figure 9.**Power grid frequency for the different considered control strategies: focus on the first 200 time slots.

ElCo | BoCo | BaCo | SmChCo | LoDeCo | |
---|---|---|---|---|---|

Degradation [%] | 5.0122 | 3.2667 | 2.3556 | 10.4521 | 0.5163 |

Exchanged energy [MWh] | 0.2924 | 0.2923 | 0.2643 | 1.1779 | 0.1955 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Scarabaggio, P.; Carli, R.; Cavone, G.; Dotoli, M.
Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective. *Energies* **2020**, *13*, 4586.
https://doi.org/10.3390/en13174586

**AMA Style**

Scarabaggio P, Carli R, Cavone G, Dotoli M.
Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective. *Energies*. 2020; 13(17):4586.
https://doi.org/10.3390/en13174586

**Chicago/Turabian Style**

Scarabaggio, Paolo, Raffaele Carli, Graziana Cavone, and Mariagrazia Dotoli.
2020. "Smart Control Strategies for Primary Frequency Regulation through Electric Vehicles: A Battery Degradation Perspective" *Energies* 13, no. 17: 4586.
https://doi.org/10.3390/en13174586