Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude
Abstract
:1. Introduction
2. System Modeling and Parameter Influence Analysis
2.1. System Model
2.2. Parameter Influence Analysis
3. Design of Fuzzy Optimization Algorithm
3.1. Definition of Optimization Problem
3.1.1. Optimization Aim
3.1.2. Boundary Transformation
3.2. Fuzzy Optimization Algorithm (FLA)
3.2.1. Algorithm Structure
3.2.2. Decoupling of FLA
- (1)
- and ;
- (2)
- or .
3.3. Fuzzification and Defuzzification
3.4. Converge Conditions and Optimization Realizing
3.4.1. Convergence Conditions
- (1)
- and and ;
- (2)
- { and } or { and };
- (3)
- { or or } and .
3.4.2. Realization of the Optimization
4. Discussion
4.1. Fuzzy Optimization Process
4.2. Optimization at Full Load Conditions under 4500 m Altitude
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
nhtc | Rotation speed of HP turbocharger (r/min) |
pin | Intake pressure (bar) |
α | Fuel injection advanced angle (°CA) |
AFR | Air fuel ratio |
n | Engine speed |
P | Engine output power (kW) |
θ | Bypass valve opening (deg) |
mfuel | Fuel injection mass per cylinder per cycle (mg/cycle/cylinder) |
Tex | HP turbine inlet temperature (K) |
pmax | Peak pressure in cylinder (bar) |
0-D | Zero dimension |
NN | Neural network |
BSFC | Brake specific fuel consumption |
HP | High-pressure stage |
LP | Low-pressure stage |
PMEP | Pump mean effective pressure |
IMEP | Indicated mean effective pressure |
References
- Liu, S.; Shen, L.; Bi, Y.; Lei, J. Effects of altitude and fuel oxygen content on the performance of a high pressure common rail diesel engine. Fuel 2014, 118, 243–249. [Google Scholar] [CrossRef]
- Shen, L.Z.; Shen, Y.G.; Yan, W.S.; Xu, J.D. Combustion Process of Diesel Engines at Regions with Different Altitude (No. 950857); SAE Paper; SAE International: Warrendale, PA, USA, 1995. [Google Scholar]
- Shen, L.Z.; Yang, Y.Z.; Lei, J.L.; Bi, Y.H.; Yan, W.S.; Yang, Y.J. Study of performance and emissions of a turbocharged inter-cooling diesel engine at different altitudes. Trans. CSICE 2006, 24, 250–255. [Google Scholar]
- Rodgers, C. Turbocharging a high altitude UAV C. I. engine. In Proceedings of the AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2001-3970, Salt Lake City, UT, USA, 8–11 July 2001. [Google Scholar]
- Xin, S.; Li, W.-X. Simulation on Plateau Performance of Diesel Engine Matched with Two-stage Sequential Turbocharging System. Acta Armamentarii 2011, 32, 397–402. [Google Scholar]
- Li, H.; Zhang, G.; Zhang, H.; Shi, L.; Yang, M.; Deng, K. Equivalent matching model of a regulated two-stage turbocharging system for the plateau adaptability. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 230, 1654–1669. [Google Scholar] [CrossRef]
- Changlu, Z.; Changjiang, L.; Kai, H.; Meng, X. Regulated method based on fuel economy for regulated two-stage turbocharging system of diesel at different altitudes. Trans. Chin. Soc. Agric. Mach. 2016, 47, 369–376. [Google Scholar]
- Liu, X.H.; Wei, M.S.; Ma, C.C.; Shi, X. Simulation on one-stage and two-stage turbocharged diesel engines at different altitudes. Trans. CSICE 2010, 28, 447–452. [Google Scholar]
- Zhu, Z.X.; Zhang, F.J.; Han, K.; Liu, Y.Y.; Luo, G.L.; Li, Y.-L. Adaption of fuel injection parameters for turbocharged diesel engines working at high altitude. Binggong Xuebao/Acta Armamentarii 2014, 35, 583–589. [Google Scholar]
- Zhou, G.M.; Liu, R.L.; Dong, S.R.; Li, J.; Wang, W.; Zhong, Z.; Ge, F. Combustion Characteristics of Common Rail Diesel Engine under High Altitude (Low Pressure) Conditions. Neiranji Xuebao/Trans. CSICE 2012, 30, 220–226. [Google Scholar]
- Haikun, S.; Changlong, D.; Jianfeng, H.; Feng, F.; Ping, L.; Miandun, H.; Liang, X. Research on Compression Ratio and Fuel Injection Advance Angle Optimization of Two-stage Turbocharged Diesel engine. Binggong Xuebao/Acta Armamentarii 2017, 38, 20–26. [Google Scholar]
- Ganapathy, T.; Murugesan, K.; Gakkhar, R.P. Performance optimization of Jatropha biodiesel engine model using Taguchi approach. Appl. Energy 2009, 86, 2476–2486. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, M. Fuel economy optimization of an Atkinson cycle engine using genetic algorithm. Appl. Energy 2013, 105, 335–348. [Google Scholar] [CrossRef]
- Beccari, S.; Pipitone, E.; Cammalleri, M.; Genchi, G. Model-based optimization of injection strategies for SI engine gas injectors. J. Mech. Sci. Technol. 2014, 28, 3311–3323. [Google Scholar] [CrossRef]
- Mariani, F.; Grimaldi, C.N.; Battistoni, M. Diesel engine NOx emissions control: An advanced method for the O2, evaluation in the intake flow. Appl. Energy 2014, 113, 576–588. [Google Scholar] [CrossRef]
- Ogaji, S.O.T.; Marinai, L.; Sampath, S.; Singh, R.; Prober, S.D. Gas-turbine fault diagnostics: A fuzzy-logic approach. Appl. Energy 2005, 82, 81–89. [Google Scholar] [CrossRef]
- Al-Hinti, I.; Samhouri, M.; Al-Ghandoor, A.; Sakhrieh, A. The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach. Appl. Energy 2009, 86, 113–121. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Zhang, F.J.; Wu, T.T. Zero-D predictable combustion model based on neural network and modeling. Trans. CSICE 2015, 33, 163–170. [Google Scholar]
- Zhu, Z.; Zhang, F.; Li, C.; Wu, T.; Han, K.; Lv, J.; Li, Y.; Xiao, X. Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau. Appl. Energy 2015, 157, 789–797. [Google Scholar] [CrossRef]
- Fletcher, R. An ideal penalty function for constrained optimization 1. Nonlinear Program. 1975, 15, 319–342. [Google Scholar] [CrossRef]
- Driankov, D.; Hellendoorn, H.; Reinfrank, M. An Introduction to Fuzzy Logic Control; DBLP: Zurich, Switzerland, 1996; pp. 1–5. [Google Scholar]
Parameters | Value (Unit) |
---|---|
Bore | 132 mm |
Stroke | 145 mm |
Compression ratio | 17:1 |
Maximum torque | 1980@1300 r/min |
Fuel injection advance angle | 17.5 |
pmax | 165 bar |
Engine Speed (r/min) | 2100 | 1900 | 1700 | 1500 | 1300 | 1200 |
pmax (bar) | 165.0 | 164.4 | 164.9 | 164.8 | 164.8 | 165.3 |
Tex (K) | 991.7 | 998.8 | 995.6 | 998.7 | 990.1 | 990.6 |
nhtc (r/min) | 86,090 | 93,995 | 93,920 | 91,148 | 90,376 | 90,766 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Zhang, F. Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude. Energies 2020, 13, 4278. https://doi.org/10.3390/en13174278
Xia M, Zhang F. Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude. Energies. 2020; 13(17):4278. https://doi.org/10.3390/en13174278
Chicago/Turabian StyleXia, Meng, and Fujun Zhang. 2020. "Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude" Energies 13, no. 17: 4278. https://doi.org/10.3390/en13174278
APA StyleXia, M., & Zhang, F. (2020). Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude. Energies, 13(17), 4278. https://doi.org/10.3390/en13174278