Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method
Abstract
1. Introduction
2. Modeling Development and Experimental Validation Method
2.1. Mathematic Equations
2.2. Modeling Methods of LST Nanoparticle and Sintering Process
2.3. Modeling Method for LST-GDC Multi-Nanoparticles and Co-Sintering Process
2.4. Modeling Conditions and Validation
3. Result and Discussion
3.1. Simulation Process of Two LST Nanoparticles
3.2. Simulation of Co-Sintering LST-GDC Multi-Nanoparticles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wiranarongkorn, K.; Arpornwichanop, A. Analysis of the Ca-looping sorption-enhanced steam reforming and solid oxide fuel cell integrated process using bio-oil. Energy Convers. Manag. 2017, 134, 156–166. [Google Scholar] [CrossRef]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Correlations between microstructures and electrochemical performances. Energy Convers. Manag. 2019, 190, 1–13. [Google Scholar] [CrossRef]
- Shen, X.; Sasaki, K. Highly redox-resistant solid oxide fuel cell anode materials based on La-doped SrTiO3 by catalyst impregnation strategy. J. Power Sources 2016, 320, 180–187. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, N.; Chuang, K.T.; Luo, J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014, 4, 118–131. [Google Scholar] [CrossRef]
- Lee, H.W.; Park, M.; Hong, J.; Kim, H.; Yoon, K.J.; Son, J.; Lee, J.; Kim, B.K. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells. Materials 2016, 9, 675. [Google Scholar] [CrossRef]
- Andersson, M.; Yuan, J.; Sunden, B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl. Energy 2010, 87, 1461–1476. [Google Scholar] [CrossRef]
- Ryan, E.M.; Mukherjee, P.P. Mesoscale modeling in electrochemical devices-A critical perspective. Prog. Energy Combust. Sci. 2019, 71, 118–142. [Google Scholar] [CrossRef]
- Lichtner, A.; Roussel, D.; Rohrens, D.; Jauffres, D.; Villanova, J.; Martin, C.L.; Bordia, R.K. Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations. Acta Mater. 2018, 155, 343–349. [Google Scholar] [CrossRef]
- Martin, C.L.; Yan, Z.; Jauffres, D.; Bouvard, D.; Bordia, R.K. Sintered ceramics with controlled microstructures: Numerical investigations with the Discrete Element Method. J. Ceram. Soc. Jpn. 2016, 124, 340–345. [Google Scholar] [CrossRef]
- Yan, Z.; Kim, Y.; Hara, S.; Shikazono, N. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks. J. Power Sources 2017, 346, 103–112. [Google Scholar] [CrossRef]
- Yan, Z.; Hara, S.; Shikazono, N. Effect of powder morphology on the microstructural characteristics of La0.6Sr0.4Co0.2Fe0.8O3 cathode: A Kinetic Monte Carlo investigation. Int. J. Hydrogen Energy 2017, 42, 12601–12614. [Google Scholar] [CrossRef]
- Cai, Q.; Adjiman, C.S.; Brandon, N.P. Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: Computational parameters. Electrochim. Acta 2011, 56, 5804–5814. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Studies in molecular dynamics. I. General method. J. Chem. Phys. 1959, 31, 459–466. [Google Scholar] [CrossRef]
- David, P.; Alexander, C.; Kilner, J.A.; Grimes, R.W. Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ. Phys. Chem. Chem. Phys. 2010, 12, 6834–6836. [Google Scholar]
- Hermet, J.; Dupé, B.; Dezanneau, G. Simulations of REBaCo2O5.5 (REGd, La, Y) cathode materials through energy minimisation and molecular dynamics. Solid State Ion. 2012, 216, 50–53. [Google Scholar] [CrossRef]
- Lu, H.; Dong, H.; Iqabl, T.; Zhang, X.; Li, G.; Zhang, D. Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells. Int. Commun. Heat Mass Transf. 2018, 91, 40–47. [Google Scholar] [CrossRef]
- Finke, R.G.; Watzky, M.A.; Whitehead, C.B. Response to “Particle Size Is a Primary Determinant for Sigmoidal Kinetics of Nanoparticle Formation: A “Disproof” of the Finke–Watzky (F-W) Nanoparticle Nucleation and Growth Mechanism”. Chem. Mater. 2020, 32, 3657–3672. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Huo, H.; Xiong, Y. Performance of LST-GDC Composite Anodes for Solid Oxide Fuel Cells. ECS Trans. 2013, 57, 1193–1199. [Google Scholar] [CrossRef]
- Sindirac, C.; Cakirlar, S.; Buyukaksoy, A.; Akkurt, S. Lowering the sintering temperature of solid oxide fuel cell electrolytes by infiltration. J. Eur. Ceram. Soc. 2019, 39, 409–417. [Google Scholar] [CrossRef]
- Lee, M.-J.; Shin, J.-H.; Ji, M.-J.; Hwang, H.-J. Fabrication and electrochemical performance of nickel- and gadolinium-doped ceria-infiltrated La0·2Sr0·8TiO3 anodes for solid oxide fuel cells. J. Power Sources 2018, 374, 181–187. [Google Scholar] [CrossRef]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Wigner, E.P. On the Quantum Correction for Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Lewis, G.V.; Catlow, C.R.A. Potential models for ionic oxides. J. Phys. C Solid State Phys. 1985, 18, 1149–1161. [Google Scholar] [CrossRef]
- Thomas, B.S.; Marks, N.A.; Begg, B.D. Developing pair potentials for simulating radiation damage in complex oxides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 228, 288–292. [Google Scholar] [CrossRef]
- Inaba, H.; Sagawa, R.; Hayashi, H.; Kawamura, K. Molecular dynamics simulation of gadolinia-doped ceria. Solid State Ion. Diffus. React. 1999, 122, 95–103. [Google Scholar] [CrossRef]
- Rittiruam, M.; Seetawan, T.; Yokhasing, S.; Matarat, K.; Thang, P.B.; Kumar, M.; Han, J.G. La/Sm/Er Cation Doping Induced Thermal Properties of SrTiO3 Perovskite. Inorg. Chem. 2016, 55, 8822–8826. [Google Scholar] [CrossRef]
- Cui, Z.; Sun, Y.; Qu, J. Molecular dynamics simulation of reduced CeO2. Solid State Ion. 2012, 226, 24–29. [Google Scholar] [CrossRef]
- Park, K.; Son, J.S.; Woo, S.I.; Shin, K.; Oh, M.-W.; Park, S.-D.; Hyeon, T. Colloidal synthesis and thermoelectric properties of La-doped SrTiO 3 nanoparticles. J. Mater. Chem. A 2014, 2, 4217–4224. [Google Scholar] [CrossRef]
- Taub, S.; Williams, R.E.A.; Wang, X.; McComb, D.W.; Kilner, J.A.; Atkinson, A. The effects of transition metal oxide doping on the sintering of cerium gadolinium oxide. Acta Mater. 2014, 81, 128–140. [Google Scholar] [CrossRef]
- Song, P.; Wen, D. Molecular dynamics simulation of the sintering of metallic nanoparticles. J. Nanopart. Res. 2010, 12, 823–829. [Google Scholar] [CrossRef]
- Zhu, H. Sintering processes of two nanoparticles: A study by molecular-dynamics simulations. Philos. Mag. Lett. 1996, 73, 27–33. [Google Scholar] [CrossRef]
- Arcidiacono, S.; Bieri, N.R.; Poulikakos, D.; Grigoropoulos, C.P. On the coalescence of gold nanoparticles. Int. J. Multiph. Flow 2004, 30, 979–994. [Google Scholar] [CrossRef]
- Koparde, V.N.; Cummings, P.T. Molecular Dynamics Simulation of Titanium Dioxide Nanoparticle Sintering. J. Phys. Chem. B 2005, 109, 24280–24287. [Google Scholar] [CrossRef] [PubMed]
- Buesser, B.; Grohn, A.J.; Pratsinis, S.E. Sintering Rate and Mechanism of TiO2 Nanoparticles by Molecular Dynamics. J. Phys. Chem. C 2011, 115, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Moos, R.; Schollhammer, S.; Hardtl, K.H. Electron mobility of Sr1-xLaxTiO3 ceramics between 600 °C and 1300 °C. Appl. Phys. A 1997, 65, 291–294. [Google Scholar] [CrossRef]
- Marina, O.A.; Canfield, N.L.; Stevenson, J.W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ion. 2002, 149, 21–28. [Google Scholar] [CrossRef]
- Fan, L.; Xiong, Y.; Liu, L.; Wang, Y.; Kishimoto, H.; Yamaji, K.; Horita, T. Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sources 2014, 265, 125–131. [Google Scholar] [CrossRef]
- Hu, Q.; Fan, L.; Wang, Y.; Wang, Z.; Xiong, Y. Nanofiber-based LaxSr1−xTiO3-GdyCe1−yO2−δ composite anode for solid oxide fuel cells. Ceram. Int. 2017, 43, 12145–12153. [Google Scholar] [CrossRef]
- Fan, L.; Xiong, Y.; Wang, Y.; Kishimoto, H.; Yamaji, K.; Horita, T. Performance of Gd0. 2Ce0. 8O1. 9 infiltrated La0. 2Sr0. 8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells: Redox stability and effects of electrolytes. J. Power Sources 2015, 294, 452–459. [Google Scholar] [CrossRef]
- Iijima, S.; Ajayan, P.M. Substrate and size effects on the coalescence of small particles. J. Appl. Phys. 1991, 70, 5138–5140. [Google Scholar] [CrossRef]
- Shaw, A.; Deb, B.; Kabi, S.; Ghosh, A. Ion dynamics in single and mixed former glasses: Correlation between microscopic lengths and network structure. J. Electroceram. 2015, 34, 20–27. [Google Scholar] [CrossRef]
- Xu, J.; Sakanoi, R.; Higuchi, Y.; Ozawa, N.; Sato, K.; Hashida, T.; Kubo, M. Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System. J. Phys. Chem. C 2013, 117, 9663–9672. [Google Scholar] [CrossRef]
- Raut, J.S.; Bhagat, R.B.; Fichthorn, K.A. Sintering of aluminum nanoparticles: A molecular dynamics study. Nanostructured Mater. 1998, 10, 837–851. [Google Scholar] [CrossRef]
- Meyer, A.Y. Molecular mechanics and molecular shape. V.† on the computation of the bare surface area of molecules. J. Comput. Chem. 1988, 9, 18–24. [Google Scholar] [CrossRef]
- Wang, H.; Porter, W.D.; Bottner, H.; Konig, J.; Chen, L.; Bai, S.; Tritt, T.M.; Mayolet, A.; Senawiratne, J.; Smith, C.M. Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity. J. Electron. Mater. 2013, 42, 1073–1084. [Google Scholar] [CrossRef]
- Xie, H.; Fujii, M.; Zhang, X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int. J. Heat Mass Transf. 2005, 48, 2926–2932. [Google Scholar] [CrossRef]
- Nichenko, S.; Staicu, D. Molecular Dynamics study of the Mixed Oxide Fuel thermal conductivity. J. Nucl. Mater. 2013, 439, 93–98. [Google Scholar] [CrossRef]
- Tabei, S.A.; Sheidaei, A.; Baniassadi, M.; Pourboghrat, F.; Garmestani, H. Microstructure reconstruction and homogenization of porous Ni-YSZ composites for temperature dependent properties. J. Power Sources 2013, 235, 74–80. [Google Scholar] [CrossRef]
- Singh, S.P.; Kanas, N.; Desissa, T.D.; Johnsson, M.; Einarsrud, M.; Norby, T.; Wiik, K. Thermoelectric properties of A-site deficient La-doped SrTiO3 at 100–900 °C under reducing conditions. J. Eur. Ceram. Soc. 2020, 40, 401–407. [Google Scholar] [CrossRef]
Atom | qi | ai (Å) | bi (Å) |
---|---|---|---|
Ti | 2.36 | 1.055 | 0.18 |
Sr | 1.84 | 1.198 | 0.16 |
La | 2.76 | 0.6 | 0.16 |
O | −1.4 | 1.893 | 0.1636 |
Ce | 2.8 | 1.33 | 0.0454 |
Gd | 2.1 | 1.1778 | 0.0127 |
Temperature (K) | VHC (J cm−3 K−1) | TC (W m−1 K−1) | Lattice Parameter (Å) |
---|---|---|---|
300 | 1.602 | 4.232 | 3.908 |
1.660 * | 4.163 * | 3.897 * | |
1100 | 1.695 | 3.456 | 3.911 |
1.689 * | 3.561 * | 3.907 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Yang, C.; Wang, J.; Lin, P.; Li, X.; Wu, X.; Yuan, J. Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method. Energies 2020, 13, 4128. https://doi.org/10.3390/en13164128
Liang C, Yang C, Wang J, Lin P, Li X, Wu X, Yuan J. Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method. Energies. 2020; 13(16):4128. https://doi.org/10.3390/en13164128
Chicago/Turabian StyleLiang, Chaoyu, Chao Yang, Jiatang Wang, Peijian Lin, Xinke Li, Xuyang Wu, and Jinliang Yuan. 2020. "Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method" Energies 13, no. 16: 4128. https://doi.org/10.3390/en13164128
APA StyleLiang, C., Yang, C., Wang, J., Lin, P., Li, X., Wu, X., & Yuan, J. (2020). Sintering Process and Effects on LST and LST-GDC Particles Simulated by Molecular Dynamics Modeling Method. Energies, 13(16), 4128. https://doi.org/10.3390/en13164128