A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency
Abstract
:1. Introduction
- First, we briefly describe the basic operation of NOMA systems. For power-domain NOMA, the principle and conditions of the SIC are presented in a general case of UE clustering. For code-domain NOMA, we introduce the comprehensive operation of SCMA.
- We present the recent advances in improving the SE and EE of the NOMA systems, and then, we discuss UE/devices association and cooperative NOMA that are based on cooperation among devices.
- To improve the SE and EE further, NOMA schemes can be integrated into emerging technologies. This paper provides an overview of such enhancements when NOMA is applied to networks based on mmWave, FD, and SWIPT.
- Finally, the challenges of forthcoming networks are discussed, and then we introduce potential research directions, including terahertz (THz) wave, intelligent reflecting surface (IRS), and learning-based methods, which may help to further improve the SE and EE.
2. Principles of NOMA Transmission
2.1. NOMA
2.1.1. DL Transmission
2.1.2. UL Transmission
2.2. SCMA
3. Spectral and Energy Efficiencies for NOMA-Based Systems
3.1. SIC Conditions for NOMA-Based Design
- Minimum SINR: The SINR for decoding a message of a certain UE should be the minimum SINRs for decoding the message at all the nearer UEs and itself.
- SIC power constraint: a series of SIC conditions can be established for each UE. Specifically, to decode a message in priority, the received power portion for the message must exceed that of the remaining portions in the SIC process.
3.2. NOMA-Assisted Spectral-Energy Efficiency
4. Spectral and Energy Efficiencies for SCMA-Based Systems
5. Improving Spectral-Energy Efficiency using UE Association and Cooperation
5.1. UE Associations
5.2. Cooperation among Devices
6. Improving Spectral-Energy Efficiency Using Emerging Technologies
6.1. Millimeter Wave
6.2. Full-Duplex Radio
6.3. Simultaneous Wireless Information and Power Transfer
7. Challenges, Opportunities, and Research Directions
7.1. Terahertz Wave
7.2. Intelligent Reflecting Surface
7.3. Learning-Based Approaches
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023); White Paper; Cisco: San Jose, CA, USA, 2020.
- Senel, K.; Cheng, H.V.; Björnson, E.; Larsson, E.G. What role can NOMA play in massive MIMO? IEEE J. Select. Topics Signal Process. 2019, 13, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surveys Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Vaezi, M.; Schober, R.; Ding, Z.; Poor, H.V. Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Commun. 2019, 26, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Chen, W.; Wu, Y.; Li, J.; Luo, Y. Toward 5G wireless interface technology: Enabling nonorthogonal multiple access in the sparse code domain. IEEE Veh. Technol. Mag. 2018, 13, 18–27. [Google Scholar] [CrossRef]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Select. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Chen, Y.; Tang, J.; So, D.K.C.; Xu, Z.; I, C.-L.; Ferrand, P.; Gorce, J.-M.; Tang, C.-H.; Li, P.-R.; et al. Green transmission technologies for balancing the energy efficiency and spectrum efficiency trade-off. IEEE Commun. Mag. 2014, 52, 112–120. [Google Scholar] [CrossRef]
- Yang, K.; Yang, N.; Ye, N.; Jia, M.; Gao, Z.; Fan, R. Non-orthogonal multiple access: Achieving sustainable future radio access. IEEE Commun. Mag. 2019, 57, 116–121. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Nonorthogonal multiple access for 5G and beyond. Proc. IEEE 2017, 105, 2347–2381. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, G.; Ma, Z.; Zhang, X.; Fan, P.; Chen, S.; Yu, F.R. When full duplex wireless meets non-orthogonal multiple access: Opportunities and challenges. IEEE Wireless Commun. 2019, 26, 148–155. [Google Scholar] [CrossRef]
- Makki, B.; Chitti, K.; Behravan, A.; Alouini, M. A survey of NOMA: Current status and open research challenges. IEEE Open J. Commun. Soc. 2020, 1, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Jindal, N.; Rhee, W.; Vishwanath, S.; Jafar, S.; Goldsmith, A. Sum power iterative water-filling for multi-antenna Gaussian broadcast channels. IEEE Trans. Inf. Theory 2005, 51, 1570–1580. [Google Scholar] [CrossRef]
- Tran, L.; Hong, E. Multiuser diversity for successive zero-forcing dirty paper coding: Greedy scheduling algorithms and asymptotic performance analysis. IEEE Trans. Signal Process. 2010, 58, 3411–3416. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Shin, O.-S. Low-complexity precoding for sum rate maximization in downlink massive MIMO systems. IEEE Wireless Commun. Lett. 2017, 6, 186–189. [Google Scholar] [CrossRef]
- Buzzi, S.; I, C.; Klein, T.E.; Poor, H.V.; Yang, C.; Zappone, A. A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE J. Select. Areas Commun. 2016, 34, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Tse, D.; Hanly, S. Multiaccess fading channels-part 1: Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Trans. Inf. Theory 1998, 44, 2796–2815. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice-Hall: New York, NY, USA, 1998. [Google Scholar]
- Li, L.; Goldsmith, A. Capacity and optimal resource allocation for fading broadcast channels-part 1: Ergodic capacity. IEEE Trans. Inf. Theory 2001, 47, 1083–1102. [Google Scholar]
- Wang, X.; Poor, H.V. Wireless Communication Systems: Advanced Techniques for Signal Reception; Prentice-Hall: New York, NY, USA, 2004. [Google Scholar]
- Wang, P.; Xiao, J.; Ping, L. Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Veh. Technol. Mag. 2006, 1, 4–11. [Google Scholar] [CrossRef]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 2013 IEEE Vehicular Technology Conference (VTC) Spring, Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Saito, Y.; Benjebbour, A.; Kishiyama, Y.; Nakamura, T. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of the 2013 IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8–11 September 2013; pp. 611–615. [Google Scholar]
- Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 2014, 21, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Fan, P.; Poor, H.V. Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 2016, 65, 6010–6023. [Google Scholar] [CrossRef]
- Choi, J. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun. Lett. 2016, 20, 2055–2058. [Google Scholar] [CrossRef]
- Pliatsios, D.; Sarigiannidis, P. Resource allocation combining heuristic matching and particle swarm optimization approaches: The case of downlink non-orthogonal multiple access. Information 2019, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.S.; Hossain, E.; Al-Dweik, A.; Kim, D.I. Downlink power allocation for CoMP-NOMA in multicell networks. IEEE Trans. Commun. 2018, 66, 3982–3998. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, T.; Chen, Y.; Wu, D. Low-complexity resource allocation for downlink multicarrier NOMA systems. In Proceedings of the 2018 IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–6. [Google Scholar]
- Liu, Y.; Xing, H.; Pan, C.; Nallanathan, A.; Elkashlan, M.; Hanzo, L. Multiple-antenna-assisted non-orthogonal multiple access. IEEE Wireless Commun. 2018, 25, 17–23. [Google Scholar] [CrossRef]
- Nguyen, V.-D.; Hoang, D.T.; Duong, T.Q.; Poor, H.V.; Shin, O.-S. Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE J. Select. Areas Commun. 2017, 35, 2681–2695. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, K.; Kishiyama, Y. Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of the 2013 IEEE Vehicular Technology Conference (VTC) Fall, Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. [Google Scholar]
- Sun, Q.; Han, S.; I, C.; Pan, Z. On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Commun. Lett. 2015, 4, 405–408. [Google Scholar] [CrossRef]
- Choi, J. On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Trans. Wireless Commun. 2016, 15, 3226–3237. [Google Scholar] [CrossRef]
- Ali, S.; Hossain, E.; Kim, D.I. Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: User clustering, beamforming, and power allocation. IEEE Access 2017, 5, 565–577. [Google Scholar] [CrossRef]
- Nasser, A.; Muta, O.; Elsabrouty, M.; Gacanin, H. Interference mitigation and power allocation scheme for downlink MIMO–NOMA HetNet. IEEE Trans. Veh. Technol. 2019, 68, 6805–6816. [Google Scholar] [CrossRef]
- Hanif, M.F.; Ding, Z.; Ratnarajah, T.; Karagiannidis, G.K. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 2016, 64, 7688. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Yan, S.; Yang, Z.; Yang, N.; Yuan, J. Beamforming design and power allocation for secure transmission with NOMA. IEEE Trans. Wireless Commun. 2019, 18, 2639–2651. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Kishiyama, Y.; Higuchi, K. Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference. In Proceedings of the 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, France, 28–31 August 2012; pp. 261–265. [Google Scholar]
- Kim, B.; Chung, W.; Lim, S.; Suh, S.; Kwun, J.; Choi, S.; Hong, D. Uplink NOMA with multi-antenna. In Proceedings of the 2015 IEEE Vehicular Technology Conference (VTC) Spring, Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Al-Imari, M.; Xiao, P.; Imran, M.A.; Tafazolli, R. Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of the 2014 International Symposium on Wireless Communications Systems (ISWCS), Barcelona, Spain, 26–29 August 2014; pp. 781–785. [Google Scholar]
- Ding, Z.; Schober, R.; Poor, H.V. A General MIMO Framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wireless Commun. 2016, 15, 4438–4454. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ding, Z.; Fan, P.; Al-Dhahir, N. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wireless Commun. 2016, 15, 7244–7257. [Google Scholar] [CrossRef]
- Tseng, S.; Chen, Y.; Fang, H. Cross PHY/APP layer user grouping and power allocation for uplink multiantenna NOMA video communication systems. IEEE Syst. J. 2019. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Z.; Xu, P.; Dai, X. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun. Lett. 2016, 29, 1263–1266. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ding, Z.; Dai, X.; Karagiannidis, G.K. On the application of quasi-degradation to MISO-NOMA downlink. IEEE Trans. Signal Process. 2016, 64, 6174–6189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Q.; Zheng, T.; Wang, H.; Ju, Y.; Meng, Y. Energy efficiency optimization in cognitive radio inspired non-orthogonal multiple access. In Proceedings of the 2016 IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016; pp. 1–6. [Google Scholar]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C.M. Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Trans. Commun. 2016, 64, 3722–3732. [Google Scholar] [CrossRef]
- Fang, F.; Ding, Z.; Liang, W.; Zhang, H. Optimal energy efficient power allocation with user fairness for uplink MC-NOMA systems. IEEE Wireless Commun. Lett. 2019, 8, 1133–1136. [Google Scholar] [CrossRef]
- Taherzadeh, M.; Nikopour, H.; Bayesteh, A.; Baligh, H. SCMA codebook design. In Proceedings of the 2014 IEEE Vehicular Technology Conference (VTC2014) Fall, Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar]
- Barrueco, J.; Montalban, J.; Regueiro, C.; Vélez, M.; Ordiales, J.L.; Kim, H.-M.; Park, S.-I.; Kwon, S. Constellation design for bit-interleaved coded modulation (BICM) systems in advanced broadcast standards. IEEE Trans. Broadcast. 2017, 63, 603–614. [Google Scholar] [CrossRef]
- Böcherer, G.; Steiner, F.; Schulte, P. Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Trans. Commun. 2015, 63, 4651–4665. [Google Scholar] [CrossRef] [Green Version]
- Loghin, N.S.; Zöllner, J.; Mouhouche, B.; Ansorregui, D.; Kim, J.; Park, S. Non-uniform constellations for ATSC 3.0. IEEE Trans. Broadcast. 2016, 62, 197–203. [Google Scholar] [CrossRef]
- Pikus, M.; Xu, W. Bit-level probabilistically shaped coded modulation. IEEE Commun. Lett. 2017, 21, 1929–1932. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y. An uplink SCMA codebook design combining probabilistic shaping and geometric shaping. IEEE Access 2020, 8, 76726–76736. [Google Scholar] [CrossRef]
- Frison, C.I.; Mora, H.C.; Almeida, C.D. MC-CDMA and SCMA performance and complexity comparison in overloaded scenarios. In Proceedings of the 2019 IEEE Colombian Conference on Communications and Computing (COLCOM), Barranquilla, Colombia, 5–7 June 2019; pp. 1–6. [Google Scholar]
- Abebe, A.T.; Kang, C.G. Grant-free uplink transmission with multi-codebook-based sparse code multiple access (MC-SCMA). IEEE Access 2019, 7, 169853–169864. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, H.; Wang, F.; Li, J. Uplink grant-free multi-codebook SCMA based on high-overload codebook grouping. In Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 16–18 August 2018; pp. 112–116. [Google Scholar]
- Hoshyar, R.; Wathan, F.P.; Tafazolli, R. Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 2008, 56, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, Y.; Siu, Y. Low complexity message passing algorithm for SCMA system. IEEE Commun. Lett. 2016, 20, 2466–2469. [Google Scholar] [CrossRef]
- Mu, H.; Ma, Z.; Alhaji, M.; Fan, P.; Chen, D. A fixed low complexity message pass algorithm detector for up-link SCMA system. IEEE Wireless Commun. Lett. 2015, 4, 585–588. [Google Scholar] [CrossRef]
- Bayesteh, A.; Nikopou, H.; Taherzadeh, M.; Ma, J.; Baligh, H.H.N. Low complexity techniques for SCMA detection. In Proceedings of the 2015 IEEE Globecom Workshops, San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Ma, X.; Yang, L.; Chen, Z.; Siu, Y. Low complexity detection based on dynamic factor graph for SCMA systems. IEEE Commun. Lett. 2017, 21, 2666–2669. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, N.; Guo, Q.; Li, Y.; Xing, C.; Kuang, J. Iterative receivers for downlink MIMO-SCMA: Message passing and distributed cooperative detection. IEEE Trans. Wireless Commun. 2018, 17, 3444–3458. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Wu, N.; Zhang, A.; Huang, X.; Li, Y.; Hanzo, L. Iterative receiver design for FTN signaling aided sparse code multiple access. IEEE Trans. Wireless Commun. 2020, 19, 915–928. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Wu, N.; Guo, Q.; Ng, D.W.K.; Yuan, J.; Hanzo, L. Iterative joint channel estimation, user activity tracking, and data detection for FTN-NOMA systems supporting random access. IEEE Trans. Commun. 2020, 68, 2963–2977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Han, S.; Meng, W. Multi-stage message passing algorithm for SCMA downlink receiver. In Proceedings of the 2016 IEEE Vehicular Technology Conference (VTC) Fall, Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Yu, L.; Fan, P.; Ma, Z.; Lei, X.; Chen, D. An optimized design of irregular SCMA codebook based on rotated angles and EXIT chart. In Proceedings of the 2016 IEEE Vehicular Technology Conference (VTC) Fall, Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Tian, L.; Zhao, M.; Zhong, J.; Xiao, P.; Wen, L. A low complexity detector for downlink SCMA systems. IET Commun. 2017, 11, 2433–2439. [Google Scholar] [CrossRef] [Green Version]
- Nikopour, H.; Yi, E.; Bayesteh, A.; Au, K.; Hawryluck, M.; Baligh, H.; Ma, J. SCMA for downlink multiple access of 5G wireless networks. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 3940–3945. [Google Scholar]
- Zhu, W.; Qiu, L.; Chen, Z. Joint subcarrier assignment and power allocation in downlink SCMA systems. In Proceedings of the 2017 IEEE Vehicular Technology Conference (VTC) Fall, Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Zhang, J.; Zhang, M.; Li, D.; Yang, Y.; Zhao, Y. Resource allocation for downlink SCMA system based on coalitional game. In Proceedings of the 2018 IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 726–731. [Google Scholar]
- Han, S.; Huang, Y.; Meng, W.; Li, C.; Xu, N.; Chen, D. Optimal power allocation for SCMA downlink systems based on maximum capacity. IEEE Trans. Commun. 2019, 67, 1480–1489. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, X.; Lu, L.; Wu, Y.; He, G.; Chen, Y. Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; pp. 4782–4787. [Google Scholar]
- Li, Y.; Sheng, M.; Sun, Z.; Sun, Y.; Liu, L.; Zhai, D.; Li, J. Cost-efficient codebook assignment and power allocation for energy efficiency maximization in SCMA networks. In Proceedings of the 2016 IEEE Vehicular Technology Conference (VTC) Fall, Montreal, QC, Canada, 18–21 September 2016; pp. 1–5. [Google Scholar]
- Li, L.; Ma, Z.; Fan, P.Z.; Hanzo, L. High-dimensional codebook design for the SCMA down link. IEEE Trans. Veh. Technol. 2018, 67, 10118–10122. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Dai, Y.; Zhu, B.; Song, J. A resource allocation method based on energy efficiency in SCMA systems. In Proceedings of the 2019 IEEE International Conference on Electronics Technology (ICET), Chengdu, China, 10–13 May 2019; pp. 34–39. [Google Scholar]
- Ferdouse, L.; Erkucuk, S.; Anpalagan, A.; Woungang, I. Energy efficient SCMA supported downlink cloud-RANs for 5G networks. IEEE Access 2019, 8, 1416–1430. [Google Scholar] [CrossRef]
- Ali, M.S.; Tabassum, H.; Hossain, E. Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access 2016, 4, 6325–6343. [Google Scholar] [CrossRef]
- Al-Abbasi, Z.Q.; So, D.K.C. User-pairing based non-orthogonal multiple access (NOMA) system. In Proceedings of the 2016 IEEE Vehicular Technology Conference (VTC) Spring, Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Liang, W.; Ding, Z.; Li, Y.; Song, L. User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Trans. Commun. 2017, 65, 5319–5332. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Gong, F.; Li, G.; Zhang, H.; Song, P. User pairing and pair scheduling in massive MIMO-NOMA systems. IEEE Commun. Lett. 2018, 22, 788–791. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, K.H.; Teh, K.C.; Luo, S. Joint user pairing and subchannel allocation for multisubchannel multiuser nonorthogonal multiple access systems. IEEE Trans. Veh. Technol. 2018, 67, 8238–8248. [Google Scholar] [CrossRef]
- Bui, V.-P.; Nguyen, P.X.; Nguyen, H.V.; Nguyen, V.-D.; Shin, O.-S. Optimal user pairing for achieving rate fairness in downlink NOMA networks. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 575–578. [Google Scholar]
- Bui, V.-P.; Nguyen, H.V.; Nguyen, V.-D.; Shin, O.-S. Robust joint optimization of transmit power and decoding order in uplink NOMA systems. Electronics 2019, 8, 930. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O. Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wireless Commun. Lett. 2019, 8, 328–331. [Google Scholar] [CrossRef]
- Nguyen, K.-H.; Nguyen, H.V.; Bui, V.-P.; Shin, O.-S. Dynamic user pairing for non-orthogonal multiple access in downlink networks. In Proceedings of the 2020 IEEE International Conference on Communications and Electronics, Phu Quoc Island, Vietnam, 13–15 January 2021. [Google Scholar]
- Zeng, M.; Yadav, A.; Dobre, O.A.; Poor, H.V. Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster. IEEE Access 2018, 6, 5170–5181. [Google Scholar] [CrossRef]
- Saggese, F.; Moretti, M.; Abrardo, A. A quasi-optimal clustering algorithm for MIMO-NOMA downlink systems. IEEE Wireless Commun. Lett. 2020, 9, 152–156. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, M.; Liu, L.; Shi, Y.; Li, J. Modeling and analysis of SCMA enhanced D2D and cellular hybrid network. IEEE Trans. Commun. 2017, 65, 173–185. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, M.; Yu, F.R.; Leung, V.C.M.; Song, M.; Zhang, Y. Resource allocation for ultra-dense networks: A survey, some research issues and challenges. IEEE Commun. Surveys Tutor. 2019, 21, 2134–2168. [Google Scholar] [CrossRef]
- Kim, H.M.; Nguyen, H.V.; Kang, G.-M.; Shin, Y.; Shin, O.-S. Device-to-device communications underlaying an uplink SCMA system. IEEE Access 2019, 7, 21756–21768. [Google Scholar] [CrossRef]
- Moltafet, M.; Parsaeefard, S.; Javan, M.R.; Mokari, N. Robust radio resource allocation in MISO-SCMA assisted C-RAN in 5G networks. IEEE Trans. Veh. Technol. 2019, 68, 5758–5768. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, W.; Wei, F.; Labeau, F. SCMA receiver design for cellular uplink transmission coexisted with D2D. In Proceedings of the 2019 International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Sultana, A.; Woungang, I.; Anpalagan, A.; Zhao, L.; Ferdouse, L. Efficient resource allocation in SCMA-enabled device-to-device communication for 5G networks. IEEE Trans. Veh. Technol. 2020, 69, 5343–5354. [Google Scholar] [CrossRef]
- Zhai, D.; Sheng, M.; Wang, X.; Sun, Z.; Xu, C.; Li, J. Energy-saving resource management for D2D and cellular coexisting networks enhanced by hybrid multiple access technologies. IEEE Trans. Wireless Commun. 2017, 16, 2678–2692. [Google Scholar] [CrossRef]
- Laneman, J.N.; Tse, D.N.C.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Kim, J.-B.; Lee, I.-H. Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Commun. Lett. 2015, 19, 1949–1952. [Google Scholar] [CrossRef]
- Xu, M.; Ji, F.; Wen, M.; Duan, W. Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Commun. Lett. 2016, 20, 1679–1682. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, G.; Zhang, H.; Song, M. Hybrid decode-forward & amplify-forward relaying with non-orthogonal multiple access. IEEE Access 2016, 4, 4912–4921. [Google Scholar]
- Kader, M.F.; Shin, S.Y. Coordinated direct and relay transmission using uplink NOMA. IEEE Wireless Commun. Lett. 2018, 7, 400–403. [Google Scholar] [CrossRef]
- Nomikos, N.; Charalambous, T.; Vouyioukas, D.; Karagiannidis, G.K.; Wichman, R. Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks. IEEE J. Select. Topics Signal Process. 2019, 13, 524–537. [Google Scholar] [CrossRef] [Green Version]
- Liau, Q.Y.; Leow, C.Y. Successive user relaying in cooperative NOMA system. IEEE Wireless Commun. Lett. 2019, 8, 921–924. [Google Scholar] [CrossRef]
- Liu, Q.; Lv, T.; Lin, Z. Energy-efficient transmission design in cooperative relaying systems using NOMA. IEEE Commun. Lett. 2018, 22, 594–597. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, D.; Zhang, Y.; Lan, Y. Analysis and design of SCMA-based hybrid unicast-multicast relay-assisted networks. Sensors 2019, 19, 329. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Li, L.; Su, X. Optimization of resource allocation in relay assisted multi-user SCMA uplink network. In Proceedings of the 2017 International Conference on Computing, Networking and Communications (ICNC), Santa Clara, CA, USA, 26–29 January 2017; pp. 282–286. [Google Scholar]
- Zhang, Y.; Wang, X.; Wang, D.; Lan, Y.; Zhang, Y. Outage performance of relay sparse code multiple access networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Aldubaikhy, K.; Wu, W.; Zhang, N.; Cheng, N.; Shen, X.S. mmWave IEEE 802.11ay for 5G fixed wireless access. IEEE Wireless Commun. 2020, 27, 88–95. [Google Scholar] [CrossRef]
- Wang, B.; Dai, L.; Wang, Z.; Ge, N.; Zhou, S. Spectrum and energy-efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J. Select. Areas Commun. 2017, 35, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Zhao, L.; Guo, J.; Ng, D.W.K.; Yuan, J. Multi-beam NOMA for hybrid mmWave systems. IEEE Trans. Commun. 2019, 67, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Cui, J.; Ding, Z.; Fan, P. Stackelberg game for user clustering and power allocation in millimeter wave-NOMA systems. IEEE Trans. Wireless Commun. 2019, 18, 2842–2857. [Google Scholar] [CrossRef]
- Sobhi-Givi, S.; Shayesteh, M.G.; Kalbkhani, H. Energy-efficient power allocation and user selection for mmWave-NOMA transmission in M2M communications underlaying cellular heterogeneous networks. IEEE Trans. Veh. Technol. 2020. [Google Scholar] [CrossRef]
- Zhao, F.; Hao, W.; Shen, L.; Sun, G.; Zhou, Y.; Wang, Y. Secure energy efficiency transmission for mmWave-NOMA system. IEEE Systems J. 2020. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Z.; Xiao, M.; Hao, L. Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for mmWave communication using lens antenna array. IEEE J. Select. Areas Commun. 2020. [Google Scholar] [CrossRef]
- Yadav, A.; Dobre, O.A. All technologies work together for good: A glance at future mobile networks. IEEE Wireless Commun. 2018, 25, 10–16. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Shin, O.-S. Joint NOMA beamforming and user scheduling for sum rate maximization in a full-duplex system. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017; pp. 731–733. [Google Scholar]
- Nguyen, H.V.; Nguyen, V.-D.; Dobre, O.A.; Wu, Y.; Shin, O.-S. Joint antenna array mode selection and user assignment for full-duplex MU-MISO systems. IEEE Trans. Wireless Commun. 2019, 18, 2946–2963. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Dobre, O.A.; Nguyen, D.N.; Dutkiewicz, E.; Shin, O.-S. Joint power control and user association for NOMA-based full-duplex systems. IEEE Trans. Commun. 2019, 67, 8037–8055. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.-D.; Nguyen, H.V.; Dobre, O.A.; Shin, O.-S. A new design paradigm for secure full-duplex multiuser systems. IEEE J. Select. Areas Commun. 2018, 36, 1480–1498. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Dobre, O.A.; Sharma, S.K.; Chatzinotas, S.; Ottersten, B.; Shin, O.-S. On the spectral and energy efficiencies of full-duplex cell-free massive MIMO. IEEE J. Select. Areas Commun. 2020. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, X.; Wen, M.; Chen, F. NOMA-based multi-pair two-way relay networks with rate splitting and group decoding. IEEE J. Select. Areas Commun. 2017, 35, 2328–2341. [Google Scholar] [CrossRef]
- Han, S.; Zhang, J.; Guo, C.; Liu, N. Full-duplex MIMO relay system design based on SCMA. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–5. [Google Scholar]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surveys Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
- Varshney, L.R. Transporting information and energy simultaneously. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1612–1616. [Google Scholar]
- Zhai, D.; Zhang, R.; Du, J.; Ding, Z.; Yu, F.R. Simultaneous wireless information and power transfer at 5G new frequencies: Channel measurement and network design. IEEE J. Select. Areas Commun. 2019, 37, 171–186. [Google Scholar] [CrossRef]
- Tang, J.; Luo, J.; Liu, M.; So, D.K.C.; Alsusa, E.; Chen, G.; Wong, K.-K.; Chambers, J.A. Energy efficiency optimization for NOMA with SWIPT. IEEE J. Select. Topics Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.-D.; Shin, O.-S. An efficient design for NOMA-assisted MISO-SWIPT systems with AC computing. IEEE Access 2019, 7, 97094–97105. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, M.; Long, K.; Karagiannidis, G.K.; Leung, V.C.M.; Poor, H.V. Energy efficient resource management in SWIPT enabled heterogeneous networks with NOMA. IEEE Trans. Wireless Commun. 2020, 19, 835–845. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Peng, M.; Chen, S. Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer. IEEE J. Select. Areas Commun. 2019, 37, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Zhao, L.; Feng, C.; Ding, Z.; Chen, H. Energy harvesting enabled NOMA systems with full-duplex relaying. IEEE Trans. Veh. Technol. 2019, 68, 7179–7183. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yin, X.; Deng, P.; Guo, T.; Wang, B. Transceiver design for downlink SWIPT NOMA systems with cooperative full-duplex relaying. IEEE Access 2019, 7, 33464–33472. [Google Scholar] [CrossRef]
- Bui, V.-P.; Nguyen, V.-D.; Nguyen, H.V.; Dobre, O.A.; Shin, O.-S. Optimization of rate fairness in multi-pair wireless-powered relaying systems. IEEE Commun. Lett. 2020, 24, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. TeraNets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Commun. 2014, 21, 130–135. [Google Scholar] [CrossRef]
- Zhang, X.; Han, C.; Wang, X. Joint beamforming-power-bandwidth allocation in terahertz NOMA networks. In Proceedings of the 2019 IEEE Annual International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9. [Google Scholar]
- Zhang, H.; Zhang, H.; Liu, W.; Long, K.; Dong, J.; Leung, V.C.M. Energy efficient user clustering, hybrid precoding and power optimization in terahertz MIMO-NOMA systems. IEEE J. Select. Areas Commun. 2020. [Google Scholar] [CrossRef]
- Sanguinetti, L.; Björnson, E.; Hoydis, J. Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination. IEEE Trans. Commun. 2020, 68, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Lu, X.; Hoang, D.T.; Niyato, D.; Shu, L.; Kim, D.I.; Liang, Y.C. Towards smart wireless communications via intelligent reflecting surfaces: A contemporary survey. IEEE Commun. Surveys Tutor. 2020. [Google Scholar] [CrossRef]
- Sena, S. What role do intelligent reflecting surfaces play in non-orthogonal multiple access? TechRxiv 2020. [Google Scholar] [CrossRef]
- Ding, Z.; Poor, H.V. A simple design of IRS-NOMA transmission. IEEE Commun. Lett. 2020, 24, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Ding, Z.; Fan, P.; Al-Dhahir, N. Unsupervised machine learning-based user clustering in millimeter-wave-NOMA systems. IEEE Trans. Wireless Commun. 2018, 17, 7425–7440. [Google Scholar] [CrossRef]
- Gui, G.; Huang, H.; Song, Y.; Sari, H. Deep learning for an effective nonorthogonal multiple access scheme. IEEE Trans. Veh. Technol. 2018, 67, 8440–8450. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xu, Y. Energy-efficient resource allocation in uplink NOMA systems with deep reinforcement learning. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- Tseng, S.; Chen, Y.; Tsai, C.; Tsai, W. Deep-learning-aided cross-layer resource allocation of OFDMA/NOMA video communication systems. IEEE Access 2019, 7, 157730–157740. [Google Scholar] [CrossRef]
- Kang, J.; Kim, I.; Chun, C. Deep learning-based MIMO-NOMA with imperfect SIC decoding. IEEE Syst. J. 2019. [Google Scholar] [CrossRef]
- Tseng, S.; Tsai, C.; Yu, C. Outage-capacity-based cross layer resource management for downlink NOMA-OFDMA video communications: Non-deep learning and deep learning approaches. IEEE Access 2020. [Google Scholar] [CrossRef]
- Luo, J.; Tang, J.; So, D.K.C.; Chen, G.; Cumanan, K.; Chambers, J.A. A deep learning-based approach to power minimization in multi-carrier NOMA with SWIPT. IEEE Access 2019, 7, 17450–17460. [Google Scholar] [CrossRef]
Survey Papers | [3] | [4] | [9] | [10] | [11] | This Paper | |||
---|---|---|---|---|---|---|---|---|---|
Performance Metrics | - | SE | - | SE | - | SE | EE | ||
Topics Related to NOMA | |||||||||
System-level | Receiver | ✓ | ✓ | ✓ | ✓ | ||||
Multiple antennas | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
UE cooperation | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
mmWave | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Full-duplex | ✓ | ✓ | ✓ | ✓ | |||||
SWIPT | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Terahertz | ✓ | ✓ | |||||||
IRS | ✓ | ||||||||
Processing-level | UE association | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Resource allocation | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Power allocation | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
UE scheduling | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Edge cloud computing | ✓ | ✓ | |||||||
Learning | ✓ | ✓ | ✓ |
Design Approaches | Objective Function, (bits/s/Hz) | Constraint for SIC |
---|---|---|
Minimum SINR | Implicit SIC constraint in the objective function | |
SIC power constraint |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.V.; Kim, H.M.; Kang, G.-M.; Nguyen, K.-H.; Bui, V.-P.; Shin, O.-S. A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency. Energies 2020, 13, 4106. https://doi.org/10.3390/en13164106
Nguyen HV, Kim HM, Kang G-M, Nguyen K-H, Bui V-P, Shin O-S. A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency. Energies. 2020; 13(16):4106. https://doi.org/10.3390/en13164106
Chicago/Turabian StyleNguyen, Hieu V., Hyeon Min Kim, Gil-Mo Kang, Kha-Hung Nguyen, Van-Phuc Bui, and Oh-Soon Shin. 2020. "A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency" Energies 13, no. 16: 4106. https://doi.org/10.3390/en13164106
APA StyleNguyen, H. V., Kim, H. M., Kang, G.-M., Nguyen, K.-H., Bui, V.-P., & Shin, O.-S. (2020). A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency. Energies, 13(16), 4106. https://doi.org/10.3390/en13164106