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Abstract: The ever-increasing requirement of massive connectivity, due to the rapid deployment of
internet of things (IoT) devices, in the emerging 5th generation (5G) mobile networks commands
for even higher utilization of the available spectrum. Non-orthogonal multiple access (NOMA)
is a promising solution that can effectively accommodate a higher number of users, resulting in
increased spectrum utilization. In this work, we aim to maximize the total throughput of a NOMA
system, while maintaining a good level of fairness among the users. We propose a three-step method
where the first step matches the users to the channels using a heuristic matching algorithm, while the
second step utilizes the particle swarm optimization algorithm to allocate the power to each channel.
In the third step, the power allocated to each channel is further distributed to the multiplexed users
based on their respective channel gains. Based on extensive performance simulations, the proposed
method offers notable improvement, e.g., 15% in terms of system throughput and 55% in terms of
user fairness.

Keywords: 5G; heuristic optimization; non-orthogonal multiple access; resource allocation

1. Introduction

1.1. Preliminaries

Future 5th generation (5G) mobile networks have increased requirements in terms of connectivity,
data rates, capacity, and bandwidth. Profound modifications are envisioned in the underlying
infrastructure and wireless access technologies ([1–4]) in order to accommodate the exponentially
increasing number of mobile devices [5].

The support for a massive number of internet of things (IoT) devices is a substantial requirement
for the 5G of mobile networks [6,7]. As a consequence, the dense deployment of a massive number of
devices increases the experienced interference. In the widely used orthogonal multiple access (OMA)
schemes [8], the interference is mitigated by allocating time, frequency or code resources orthogonally.
Nevertheless, the limited available spectrum along with the massive number of deployed devices
makes the orthogonal resource allocation inefficient and impractical [9,10].

The non-orthogonal multiple access (NOMA) concept enables devices to share the frequency
resources, which leads to improved spectrum efficiency [11,12]. NOMA exploits the power domain,
as many users are multiplexed at the same frequency using different power levels. The distinction and
separation of the multiplexed messages are achieved by the successive interference cancellation (SIC)
process [13,14]. The basic concept of SIC is to detect the strongest user signal from the original received
signal, which contains the signals of multiple users transmitting on the same frequency. Once the
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strongest user signal is detected, its contribution to the original signal is regenerated and subtracted
from the received signal. The steps of the SIC process are summarized

1. Detect the strongest user signal from the received signal.
2. Decode the user signal.
3. Regenerate the strongest user signal using its chip sequence.
4. Use the generated signal to cancel the user signal from the received signal.
5. Repeat the process until all the users have decoded their respective signals.

Figure 1 shows a comparison between the NOMA and OMA schemes, where two users are
connected to the same base station (BS). User 1 has better channel gain than user 2, as user 1 is
located closer to the BS. In the OMA scheme, the BS transmits the signals in different channels, so the
interference between them is eliminated. On the other hand, in the NOMA scheme, the two signals are
encoded using different power levels and transmitted on the same channel. Upon signal reception,
user 1 performs SIC to remove the signal of user 2 and then she/he decodes its respective signal. User 2,
having worse channel gain, is not able to perform SIC and considers the signal of user 1 as noise.
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Figure 1. Conceptual comparison between (a) orthogonal multiple access (OMA) and (b) non-
orthogonal multiple access (NOMA).

1.2. Related Work

The aforementioned remarks indicate that the user and channel matching, as well as the power
allocation, significantly affect the performance of NOMA systems. A summary of the related works is



Information 2019, 10, 336 3 of 20

shown in Table 1. The reference column contains the references of the related works, while the Aim
and Proposed method columns contain the problem that the authors aim to solve and their proposed
method respectively.

Table 1. Summary of related works.

Reference Aim Proposed Method

[15] Investigation of outage probability in NOMA
system with randomly deployed users Mathematical analysis of the outage probability

[16] Channel assignment and power
allocation optimization

Channel assignment exploiting matching theory
and power allocation using water-filling method

[17] Power allocation optimization Clustering of deployed users using mixed integer
non-linear programming

[18] Channel assignment and power
allocation optimization

Water-filling method in order to maximize the
total system throughput

[19] Interference mitigation in MIMO
NOMA systems

Application of beamforming techniques on
user clusters

[20] User scheduling and power
allocation optimization

Matching theory and successive convex
approximation techniques

[21] Power allocation optimization in
heterogeneous NOMA systems Iterative distributed power allocation scheme

[22] Power allocation optimization and interference
mitigation in heterogeneous NOMA systems

Interference alignment scheme based on
user clustering

[23] Power allocation optimization in
heterogeneous NOMA systems

Exploitation of CoMP schemes in order to apply
a low-complexity distributed power
optimization method

[24] Energy efficiency optimization for multi-cluster
MIMO NOMA system under QoS constraints

Water-filling-based method in order to maximize
the system throughput under a given total power

[25] Throughput maximization through power
control and beamforming

Decomposition of the joint problem into
sub-problems and development of
a sub-optimal solution

[26] User scheduling and power
allocation optimization

Exploitation of Lyapunov stochastic
optimization scheme

[27] Maximization of spectral efficiency in a NOMA
system with mixed-traffic requirements

Developed a group-based power
allocation scheme

[28] Throughput maximization in relay-based
NOMA systems

Conversion of the quasi-concave problem into
a convex one, and proposal of a dynamic power
allocation scheme

[29] User scheduling and power
allocation optimization Leverage of convex optimization techniques

[30] Maximization of the minimal achievable
user throughput

Development of a two-step joint beamforming
and power allocation solution

[31]
Minimization of transmission power under
throughput constraints in MIMO
NOMA systems

Combination of power allocation, user clustering
and beamforming techniques

[32] Optimization of proportional fairness of
the users Joint user pairing and power allocation method

[33] Energy efficiency optimization through
optimal resource allocation

Formulation as linear programming problem and
utilization of CPLEX optimization tool

The outage probability and throughput of a NOMA system are investigated in [15]. Di et al.
[16] proposed a method that optimizes the channel assignment and power allocation in order to
achieve a balance between the number of scheduled users and system throughput. The authors
in [17] proposed a low-complexity sub-optimal clustering scheme, where cluster power allocation
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is optimized under constraints. Hojeij et al. [18] proposed a water-filling-based power allocation
method that is implemented within the proportional fairness scheduler. Ali et al. [19] investigated
the application of NOMA with SIC in downlink multiple-input multiple-output (MIMO), where the
number of users is greater than the number of antennas in the BS. The users are formed into clusters
and a linear beamforming technique is proposed in order to mitigate the intra-cluster interference.
The authors in [20] utilized matching theory and successive convex approximation techniques in order
to optimize user scheduling and power allocation. Ni et al. [21] solved the resource allocation problem
by maximizing the sum-rate of a heterogeneous NOMA network under the constraints of maximum
transmit power and Quality of Service requirements. In [22] proposed a method to efficiently calculate
the allocated user power in MIMO NOMA systems. Their proposed method involves an interference
alignment scheme that organizes users into clusters in order to mitigate the intra-cluster interference.
The authors in [23] consider the dynamic power allocation problem in heterogeneous NOMA systems,
by exploiting coordinated multi-point (CoMP) schemes. The problem was formulated as a joint
power optimization problem among the coordinating BSs and a low-complexity distributed power
optimization approach was proposed. Zeng et al. [24] considered the energy efficiency optimization
problem for a multi-cluster multi-user MIMO NOMA system under a quality of service (QoS) constraint
for each user. The proposed method optimizes energy efficiency by utilizing a water-filling-based
method in order to maximize the system throughput under a given total power. Zhu et al. [25]
considered the throughput maximization of a 2-user uplink NOMA system through joint power
control and beamforming. As the problem is non-convex, they decomposed into two subproblems
and proposed a sub-optimal solution. The authors in [26] proposed a joint user scheduling and
power allocation scheme based on the Lyapunov stochastic optimization method. Brighente and
Tomasin [27] proposed a method to increase the spectral efficiency of a downlink NOMA system
with mixed-traffic requirements. They split the power allocation problem into two sub-problems
and proposed a group-based power allocation scheme. The power allocation in NOMA systems
where the communication among the BS and the users is facilitated through relays is investigated
in [28]. The authors converted the original quasi-concave optimization problem into a feasible convex
problem and proposed a dynamic power allocation scheme in order to maximize system throughput.
The authors in [29] proposed a two-step user scheduling and power optimization scheme based
on convex optimization techniques in order to optimize the energy efficiency of a heterogeneous
NOMA system. Xing et al. [30] proposed a joint beamforming and power allocation solution, in order
to maximize the minimal achievable throughput among multiple users. Jeong et al. [31] proposed
a scheme that involves power allocation, user clustering, and beamforming in order to minimize
the transmit power under throughput constraints in Multiple Input Single Output NOMA systems.
Chen et al. [32] aim to improve the proportional fairness of the users, by proposing a joint user
pairing and power allocation approach. An approach to optimize energy efficiency is presented in [33].
The complex resource allocation problem is reformulated as a linear programming problem and solved
using the CPLEX optimization tool.

The majority of the works found in the literature aim to increase the performance of NOMA
systems in terms of throughput, energy efficiency, and user fairness, through power allocation
optimization, user clustering, and beamforming techniques [34]. The resulting optimization problem
is non-convex, which means that there are no tractable solutions. Most of the aforementioned works
aim to solve the problem by converting it into tractable sub-problems, resulting in a sub-optimal
solution. Heuristic and evolutionary algorithms can prove to be promising assets in solving non-convex
optimization problems, as they iteratively improve a starting solution until they reach a near-optimal
one. Nevertheless, there are limited works that utilize evolutionary algorithms in order to optimize
the performance of NOMA systems.
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1.3. Novelty of This Work and Structure of the Paper

This paper extends our earlier work, presented in [35], by solving (a) the user-channel matching
problem using a heuristic matching algorithm and (b) the power allocation problem using an evolutionary
algorithm, namely particle swarm optimization (PSO) [36]. The proposed heuristic matching algorithm,
produces a stable matching between two disjoint sets of users and channels, while the PSO algorithm
near-optimally distributes the power budget to the channels. Summarizing, the contribution of this work
is as follows:

• A heuristic user-channel matching algorithm.
• Optimal power allocation to each channel using the PSO algorithm.
• Intra-channel power allocation to each user based on the channel gain of each user.

The remainder of the paper is organized as follows. Section 2 describes the NOMA downlink
system and formulates optimization problem. In Section 3, we describe the proposed method used
to solve user-channel matching and power allocation problems. Section 4 presents the system model
parameters and the performance indicators, along with the results. Finally, Section 5 concludes
the paper.

2. System Description and Problem Formulation

2.1. Description of the NOMA Scheme with SIC

A summary of all the terms mentioned in this section is summarized in Table 2. We consider
a system consisting of a BS and K randomly deployed users connected to the BS. The BS has a total
power budget of Pmax, while the total system bandwidth B is divided into S channels. The BS
transmits the multiplexed signals of up to Ns users in the same channel using different power levels.
The transmitted signal xs on channel s is given by:

xs =
Ns

∑
k=1

√
Ps,kxs,k, (1)

where Ps,k is the power allocated to the k multiplexed user on channel s, and xs,k the transmitted signal
relative to that user. The received signal of user k on channel s is given by ys,k.

ys,k = hs,kxs + ws,k, (2)

where hs,k denotes the channel gain coefficient of fading channel and ws,k denotes the additive white
Gaussian noise (AWGN). The users with better channel gain, denoted by hs,k, perform the SIC
process ([37,38]) in order to separate their respective signal, considering the other user signals as
interference. For example, assuming that Ns = 2 and h2

s,1 > h2
s,2, the first user performs SIC and

removes the second user’s signal, while the second user considers the first user’s signal as noise. Thus,
the achievable throughput of two multiplexed users on channel s is given by:

Rs,1 =
B
S

log2(1 +
hs,1Ps,1

B
S N0

)

Rs,2 =
B
S

log2(1 +
hs,2Ps,2

hs,2Ps,1 +
B
S N0

),
(3)

where Ps,1 and Ps,2 are the BS transmit power to users 1 and 2 respectively, and N0 is the noise power
spectral density of the AWGN, which is assumed to be constant over all channels.
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Table 2. Notations and symbols.

Term Description

B Total system bandwidth
hs,k Channel gain coefficient
K Number of users
N0 Noise spectral density of AWGN
Ns Number of multiplexed users in the same channel
Pmax Total power budget of the Base Station
Ps,k Power allocated to user k in channel s
Rs,k Achievable throughput of user k in channel s
S Number of channels
ws,k Additive White Gaussian Noise
xs Transmitted signal in channel s
xs,k Transmitted signal of user k in channel s
ys,k Received signal of user k in channel s

2.2. Problem Formulation

The Equation (3) indicates that the selection of the multiplexed users and the amount of power
allocated to each user on each channel affects the total achievable throughput of the whole system
Rtotal , which is given by:

Rtotal =
S

∑
s=1

K

∑
k=1

Rs,k (4)

We introduce an S× K binary matrix Θ, in which each element denotes whether channel s is
assigned to user k. For example, consider the following matrix which denotes the assignment of three
channels to four users:

Θ =

0 1 0 1
1 1 1 0
1 0 1 0

 , (5)

The first row, which corresponds to the first channel, indicates that the channel is assigned to the
second and fourth users. Similarly, the second channel is assigned to the first, second, and third users.
Finally, the third channel is assigned to the first and third users. Therefore, Equation (4) becomes:

Rtotal =
B
S

S

∑
s=1

K

∑
k=1

θs,k log2(1 +
hs,kPs,k

Is,k +
B
S N0

), (6)

where Is,k denotes the interference the user experiences from other users and θs,k is a binary element of
the matching matrix Θ. Considering the SIC description from the previous subsection, the interference
of user k on channel s is:

Is,k =
Ns

∑
i=1,hs,k<hs,i

hs,kPs,i. (7)

Consequently, the optimization problem is formulated as follows:

max
θs,k ,Ps,k

B
S

S

∑
s=1

K

∑
k=1

θs,k log2(1 +
hs,kPs,k

Is,k +
B
S N0

)

subject to:
S

∑
s=1

K

∑
k=1

Ps,k ≤ Pmax

θs,k ∈ {0, 1}, ∀s ∈ S, ∀k ∈ K

∑
k∈θs

θs,k ≤ Ns, ∀s ∈ S.

(8)
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The first constraint ensures that the sum of the allocated power does not exceed the BS total power
budget. The second constraint ensures that the elements of matrix Θ are binary. Finally, the third
constraint ensures that each channel is not assigned to more than Ns users.

3. Proposed Channel Matching and Power Allocation Methods

The aforementioned optimization problem is a non-convex optimization problem, which is too
complex to solve it using conventional methods. Furthermore, there are three substantial requirements,
in order to ensure a high QoS: (a) the whole process of channel matching and power allocation should
be completed within a few seconds, (b) ensure the connectivity of all the users within the area, and
(c) maintain a good level of fairness among the users. Therefore, we decouple the channel–user
matching and power allocation problems and we propose a method that solves the optimization
problem in three steps. In the first step, we solve the channel assignment problem by utilizing
a heuristic matching algorithm, while in the second step we utilize the PSO [39] algorithm to solve
the power allocation problem. Finally, the power allocated to each channel is distributed to each user
matched to that channel, based on the user’s channel gain.

A conceptual example of the proposed approach is shown in Figure 2. In this example, there are
six users randomly deployed and five available frequency channels. Using the heuristic user-channel
matching algorithm each user is matched with a number of channels. After the matching procedure,
the power level of each channel is calculated using the PSO algorithm. Finally, the power level of each
channel is distributed proportionally to the corresponding users depending on the channel gain.
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Figure 2. Conceptual example of the proposed approach.

3.1. Heuristic User-Channel Matching

We consider a set of users, K, and a set of channels, S as two disjoint sets, where each member of
each set aims to maximize its performance. The users aim to match with specific channels that provide
the best channel gain. On the other hand, the channels aim to match with one or more users, so that
the channel has the best performance in terms of throughput. In order to solve this matching problem,
we propose a heuristic matching algorithm, which manages to achieve a stable matching between
elements of two disjoint sets, while taking into account the preference of each element in the first set.

The proposed method that solves the channel-user matching problem is shown in Algorithm 1.
In the initialization phase of the algorithm, a channel preference list is formed for each user and all
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users and channels are considered unmatched. Additionally, a counter C(s), ∀s ∈ S holds the number
of matched users of each channel. In the main loop, each user proposes itself to its most preferred
channel. If the channel has not been matched with a user (C(s) = 0), the proposed user is matched
with the channel. If the channel has been already assigned to a user, it has to choose among three
options, depending on the resulting channel throughput: a) keep the current user, b) drop the current
user and match with the new user, and c) keep the current user and multiplex him with the new one.
In the case of C(s) = Ns, the channel will keep the set of users that result in the maximum throughput.
Equation (3) is used for calculating the channel throughput, assuming that Ps,1 = Ps,2 = 1. Each time
a user is matched with a channel or dropped from a match he/she proposes to his/her next preferred
channel. The algorithm completes when all users and channels are matched.

Algorithm 1 Heuristic channel–user matching.

Input: S: number of channels, K: number of users, H: channel gain matrix

Output: Θ: user-channel assignment binary matrix

Initialization:

1: for each user k = 1 to K do

2: initialize the channel preference list user_pre f _list based on H
3: end for
4: for each channel s = 1 to S do

5: set the number of matching users to zero: C(s) = 0

6: end for

Main loop:

7: while there are unmatched channels and users do

8: for each user in unassigned_users do

9: each user proposed to its most preferred channel

10: if C(s) = 0 then

11: the user is matched with the channel

12: else if 1 ≤ C(s) ≤ Ns then

13: the channel matches with the new user if the multiplexing of the users results in better

channel throughput

14: else if C(s) > Ns then

15: the channel chooses the set of users that results in the best channel throughput

16: end if
17: Θ is updated accordingly

18: end for
19: end while
20: return Θ

3.2. Power Allocation

After all, channels have been matched to their respective users, we utilized the PSO algorithm
to calculate the allocated power in each channel. In the case of two users sharing the same channel,
for the intra-channel power allocation, the user with better channel gain will be allocated more power.
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Therefore, the PSO calculates the power allocated to each channel by considering the user with a better
channel gain.

PSO is an optimization technique, which is based on the flocking behavior of birds. A large
population (swarm) of candidate solutions (particles) are placed at random initial positions and move
in the search-space until the optimal solution is detected.

An implementation of the PSO developed for optimizing the power allocation problem is shown
in Algorithm 2. The number of channels, the population size, and the channel gain of each user is used
as inputs, while the output vector P̄ = {P1, ..., Ps, ..., PS} contains the final allocated powers to each
channel. A penalty function is incorporated to the fitness function [40] in line 10, in order to enforce
the constraints of the optimization problem. This means that when a potential solution violates the
constraint the corresponding fitness function greatly deteriorates.

Algorithm 2 Channel power allocation using particle swarm optimisation (PSO).

Input: S: number of channels, M: population size, hs: user gain of each channel

Output: P̄: power assigned to each channel

Initialization:

1: for each particle i = 1 to M do

2: initialize the particle’s random position xi

3: set the particle’s best known position (pbest) to the initial position

4: set the swarm’s best known position (gbest) to the initial position

5: end for

Main loop:

6: while termination condition is not met do

7: for each particle i = 1 to M and each channel s = 1 to S do

8: update the particle’s velocity:

vi,s ← w ∗ vi,s + c1 ∗ rand() ∗ (pbesti,s − xi,s) + c2 ∗ rand() ∗ (gbests − xi,s)

9: update the particle’s position:

xi,s ← xi,s + vi,s

10: evaluate the fitness function f as:

f = ∑S
s=1 log2(1 +

h2
s Ps

B
S N0

)− 100 ∗max(0, ∑S
s=1(Ps − Pmax))2

11: update the particle’s best known position pbesti,s and the swarm’s best known position gbests

based on the fitness function

12: end for
13: end while
14: Output the swarm’s best position: P̄← gbests

15: return P̄

Finally, for determining the intra-channel power allocation, we distribute the allocated channel
power to the multiplexed users, proportionally to their channel gains. Hence, the power of each user is
calculated as:

Ps,k =
P̄s(

h2
s,k

B
S N0

)
−γ

∑j∈θs
(

h2
s,j

B
S N0

)
−γ , ∀s ∈ S and ∀k ∈ K, (9)
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where θs is the set of users matched to channel s, and γ is a decay factor ranging from 0 ≤ γ ≤ 1.

3.3. Numerical Example

In this subsection, an illustrative example of the proposed user-channel matching and power
allocation method is presented. We consider four users, namely A–D, aiming to match with
six channels.

The channel preference order, which is based on the channel gains, for each user is shown in
Table 3. At the beginning of the process, each user proposes to the most preferred channel in order
to match. According to Table 3, users A and B will propose to channel 3, while users C and D will
propose to channel 5. Each of the channels evaluates its corresponding proposals in terms of achieved
throughput. Channel 3 calculates the achieved throughput of all possible options (as described in
the previous section) and it determines that the maximum throughput is achieved in the case that
both A and B users are multiplexed. Channel 5 determines that it achieves better throughput if it
matches only with user C. Therefore, users A and B are matched with channel 3, and user C is matched
with channel 5. User D will propose to its next preferred channel (i.e., channel 6). After this first
round of matches, channels 1, 2, and 4 remain unmatched. Hence, the channel preference order will
be adjusted so it only contains the unmatched channels. Similarly, user A will propose to channel 1,
user B will propose to channel 4, user C will propose to channel 2, and user D will propose to channel
4. Channels 1 and 2 have not been previously matched so they will accept the proposals of users
A and C respectively. Channel 4 determines that it achieves better throughput if users B and D are
multiplexed, so it accepts D’s matching proposal. The final matchings are channel 1—user A—channel
2—user C—channel 3—users A and B—channel 4—users B and D—channel 5—user C—and channel
2—user D.

Table 3. Channel Preference Order of Each User

User Channel Preference Order

A 3, 1, 2, 6, 5, 4
B 3, 4, 5, 2, 1, 6
C 5, 2, 6, 3, 4, 1
D 5, 6, 4, 1, 2, 3

The PSO algorithm was used to calculate the power allocated to each channel, so the total system
throughput is maximized. As stated in the previous section, in the case of two users sharing the same
channel, the user with the better channel gain was considered for the calculation of the allocated
channel power. In this example, we utilized four particles for the PSO algorithm.

Three representative snapshots of the initial, intermediate, and final phases of the PSO algorithm
are shown in Table 4. Each particle consists of six values, which correspond to the power levels of each
channel. The throughput column shows the sum throughput of all channels.

In the initialization phase, each particle’s value was set to a random number ranging from 0
to Pmax. In this phase, the third particle achieves the best performance. In the intermediate phase,
the values of the particles start to converge, while the 1st particle achieves the best performance.
In the final phase, all particles have converged to the same values, along with the sum-throughput of
the channels.

Upon the completion of the PSO algorithm, the intra-channel power allocation is calculated for
the channels that are shared between two users, using Equation (9).
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Table 4. PSO Phases

Channels 1 2 3 4 5 6 Channel Throughput

Initialization

1st Particle 1.399 4.636 3.282 0.489 1.463 5.427 79.269
2nd Particle 2.438 5.058 4.756 0.390 1.663 5.024 80.480
3rd Particle 3.971 4.386 5.258 3.001 2.370 5.861 84.798
4th Particle 5.036 2.699 4.879 0.132 2.608 4.496 79.584

Intermediate

1st Particle 6.690 6.217 7.386 5.243 3.706 8.447 88.520
2nd Particle 6.082 6.181 7.651 4.680 3.644 8.637 88.269
3rd Particle 5.676 6.231 7.435 4.269 3.373 8.318 87.842
4th Particle 5.331 7.295 7.647 4.379 3.403 8.477 88.096

Final

1st Particle 6.869 6.694 8.020 5.399 3.961 9.058 89.023
2nd Particle 6.869 6.694 8.020 5.399 3.961 9.058 89.023
3rd Particle 6.869 6.694 8.020 5.399 3.961 9.058 89.023
4th Particle 6.869 6.694 8.020 5.399 3.961 9.058 89.023

4. Performance Evaluation

4.1. System Model Parameters

In order to evaluate the proposed method, we utilize a realistic scenario similar to the one depicted
in Figure 2. In this scenario, we utilize the heuristic user-channel matching algorithm to match the
available frequency channels to the users, which are randomly deployed in the cell area. Afterward,
we calculate the power allocated to each channel using the PSO algorithm. Finally, the power of each
user in each channel is calculated proportionally to the channel gain of that user.

A simulation environment in Matlab was developed, where the aforementioned scenario was
designed to evaluate the proposed method against the methods proposed in [16,35], as well as the
conventional OMA scheme. The final results were derived by taking the average values from running
104 simulations. The parameters of the system are based on the LTE/LTE-advanced specifications [41]
and they are summarized in Table 5. A BS is placed at the center of a 500m radios cell, with a maximum
power budget of 46 dBm, while the users are randomly deployed. The number of users ranges from 6 to
20, while the QoS threshold ranges from 1 to 15 Mbps. The system bandwidth is 10 MHz, divided into 8,
16, 32, 64, or 128 channels, with a carrier frequency of 2 GHz. The distance-dependent path loss model
is considered with a decay factor of 3.76, while the noise power spectral density is −174 dBm/Hz.
The maximum number of multiplexed users is Ns = 2, while perfect channel estimation is assumed.

For the PSO algorithm, we utilize a population size of M = 100 particles. The inertia weight
w decreases in each iteration from wmax = 0.9 to wmin = 0.4, while the acceleration factors are set
to c1 = c2 = 0.25 [42]. The main loop of the PSO algorithm terminates if the algorithm reaches 1000
iterations or if the gbest value is not optimized further than a tolerance factor of 10−12. Finally, the decay
factor for intra-channel power allocation is set to γ = 0.7.

Table 5. Simulation parameters.

Parameter Value

Carrier Frequency 2 GHz

Cell Radius 500 m

Maximum Transmission Power 46 dBm

Number of channels 8, 16, 32, 64, 128

System Bandwidth 10 MHz

QoS Threshold 1–15 Mbps
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Table 5. Cont.

Parameter Value

Distance Dependent Path Loss 128.1 + 37.6log10(d), d in km

Noise Power Spectral Density −174 dBm/Hz

Number of deployed users 6–20

Maximum number of multiplexed users 2

PSO Population Size 100

PSO Inertia Weight 0.9–0.4

PSO Accelaration Factors 0.25

PSO Maximum Iterations 1000

PSO Best Value Gain Tolerance 10−12

Intra-channel Power Allocation Factor 0.7

4.2. Numerical Results

For the evaluation of the results, we adopted three performance metrics, namely the total achieved
system throughput, the user fairness and the average number of unconnected users. The user fairness
is calculated using the Gini fairness index [43], which is defined as:

G =
1

2K2r̄

K

∑
x=1

K

∑
y=1
|rx − ry|, where

r̄ =
1
K

K

∑
k=1

rk and rk =
S

∑
s=1

Rs,k.

(10)

The Gini index ranges from 0, corresponding to the maximum fairness level, to 1, corresponding
to the minimum level of fairness among users. We evaluate the proposed user–channel matching
PSO (UCM-PSO) method, by comparing it with the User-subchannel matching algorithm (USMA)
proposed in [16], our previously proposed extensive tabu search PSO (ETS-PSO) method [35], as well
as with the conventional OMA scheme.

Figure 3 depicts the achieved system throughput as a function of the number of channels,
assuming that the number of deployed users is K = 10. In the USMA case, the total system throughput
was about 185 Mbps, while in the UCM-PSO, ETS-PSO, and OMA, the throughput was 155 Mbps,
147 Mbps, and 145 Mbps, respectively. The USMA had the best performance of all compared methods
as the users close to the BS are matched with more channels because. The UCM-PSO method has better
performance compared to the ETS-PSO as the channel preference of each user is considered instead of
enforcing a tabu search scheme which may result in a user not having a chance to match with a more
preferred channel. The OMA scheme had the worst performance as each user was matched with
a single channel, so the available bandwidth was not utilized effectively.

Figure 4 depicts the achieved system throughput as a function of the number of users, assuming
that the number of channels is S = 128. In all cases the total system throughput is increasing as the
number of users increases. Specifically, the USMA’s throughput increases from 172 Mbps to 197 Mbps.
The UCM-PSO ranges from 150 Mbps to 158 Mbps, while the ETS-PSO ranges from 145 Mbps to
150 Mbps. The OMA scheme ranges from 143 to 148 Mbps. The results indicate that the USMA has
the best performance as the number of channels is considerably higher than the number of users,
so the users closest to the BS have wider allocated bandwidth. The UCM-PSO and ETS-PSO methods
present an increase in the achieved system throughput as the number of users increases. This is
expected as more users are multiplexed over the channels, thus increasing the bandwidth utilization.
The UCM-PSO has better performance than the ETS-PSO as each user has a better chance to match with
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his/her preferred channels. The OMA scheme has the worst performance due to the lower efficiency
of bandwidth utilization.
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Figure 3. Achieved system throughput for K = 10 users, when the number of channel ranges from 8
to 128.
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Figure 4. Achieved system throughput for S = 128 channels, when the number of users ranges from 6
to 20.

Figure 5 depicts the Gini fairness index as a function of the number of channels, assuming that
the number of deployed users is K = 10. The USMA had an index value of about 0.80, while OMA’s
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value was around 0.55. The index values of ETS-PSO and UCM-PSO decreased as the number of
channels increase. Specifically, ETS-PSO ranges from 0.50 to 0.25, and UCM-PSO ranges from 0.38 to
0.12. The USMA had the worst performance in terms of fairness as the users closest to the BS will be
matched to more channels, while the users farthest from the BS were matched to less or no channels.
Similarly, in the OMA scheme, the users closest to the BS were matched to more channels. The ETS-PSO
had better performance as the employed tabu search scheme enforces that all channels uniformly
matched to all users. The proposed UCM-PSO achieved performance increases as the number of
channel increases as the users have a higher number of preferred channels to match to, meaning that
the available bandwidth is more effectively utilized.
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Figure 5. Gini fairness index for K = 10 users, when the number of channel ranges from 8 to 128.

Figure 6 depicts the Gini fairness index as a function of the number of users, assuming that the
number of channels is S = 128. As the number of users increased, the USMA’s index value increased
from 0.65 to 0.90, while OMA’s value increased from 0.50 to 0.60. The ETS-PSO’s index maintained
a steady value of 0.25, while UCM-PSO’s value slightly increases from 0.10 to 0.16. The OMA scheme
matched each channel to a single user, meaning that the users close to the BS will have greater
throughput compared to the others, which justifies the poor performance. Similarly, in the USMA,
the users close to the BS were matched with more channels. In ETS-PSO a tabu search scheme is
employed, so all users have an equal number of matched channels. The proposed UCM-PSO method
has the best performance as it manages to maintain a balance between the channel preference of each
user and the number of channels matched to each user.

Figure 7 shows the average number of unconnected users as a function of the number of channels,
assuming that the number of deployed users is K = 10. As the OMA scheme matches one user to each
channel, the number of unconnected users was zero when the number of channels was greater than the
number of users. The USMA leaves some users unconnected as the users close to the BS were matched
to more channels, while users far from the BS were not matched to any channel at all. The ETS-PSO
method equally distributes the channels to all users, while the proposed UCM-PSO method enforces
that all users were matched to the available channels.
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Figure 6. Gini fairness index for S = 128 channels, when the number of users ranges from 6 to 20.
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Figure 7. Average number of unconnected users for K = 10 users, when the number of channel ranges
from 8 to 128.

Figure 8 shows the average number of unconnected users as a function of the number of users,
assuming that the number of channels is S = 128. The OMA scheme, the ETS-PSO, and the UCM-PSO
present similar performance as there is not a single unconnected user. In the USMA the average
number of unconnected users linearly increases with the number of deployed users.
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Figure 8. Average number of unconnected users for S = 128 channels, when the number of users
ranges from 6 to 20.

Figure 9 shows the average user throughput as a function of the number of users, assuming that
the number of channels is S = 128. The OMA and the ETS-PSO schemes achieved similar performance.
The UCM-PSO achieved slightly better performance, while USMA achieves the best performance in
terms of the average user throughput.
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Figure 9. Average user throughput for S = 128 channels, when the number of users ranges from 6
to 20.
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Figure 10 shows the percentage of users that achieve lower performance than the QoS threshold,
assuming that the number of channels is S = 64 and the number of users is N = 10. The QoS threshold
ranges from 1 to 15 Mbps. The UCM-PSO algorithm achieves the best performance, as the percentage
of users bellow the QoS threshold is low, compared to the others. The ETS-PSO achieves similar
performance, while the percentage is very high in the OMA and USMA schemes.
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Figure 10. Percentage of users that achieve lower performance than the quality of service (QoS)
threshold, for S = 64 and N = 10.

5. Conclusions

Driven by the limited spectrum availability and the exponential proliferation of IoT devices, we
proposed a method that improves the 5G mobile network performance. In particular, we proposed
a three-step method that solves the user-channel matching and power allocation problems. In order
to evaluate the performance of the proposed method, we performed extensive simulations and
compared the results with the USMA proposed in [16], our previous method presented in [35] and
the conventional OMA scheme. The results indicate that our proposed method outperforms all the
compared ones in terms of system fairness and average number of unconnected users.

In the future, we aim to extend this method to a more complicated system involving Multiple Input
Multiple Output antenna configurations. Additionally, the mitigation of inter-cell interference among
the users who are deployed on the cell edge will be investigated [44,45]. Finally, data offloading are
promising techniques in order to provide high quality of service and experience [46,47] in dense
heterogeneous 5G network deployments. Hence, we plan to extend the work by investigating
interference mitigation techniques among different wireless communication technologies.
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