# Control System Development for the Three-Ports ANPC Converter

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the ANPC-3P Inverter

#### Modulation

## 3. Control System

#### 3.1. Ac Port Control System

#### 3.2. Neutral Point Balancing

#### 3.3. ESS Control System

## 4. Experimental Results and Discussions

## 5. Conclusions

## 6. Patents

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Vazquez, S.; Lukic, S.M.; Galvan, E.; Franquelo, L.G.; Carrasco, J.M. Energy Storage Systems for Transport and Grid Applications. IEEE Trans. Ind. Electron.
**2010**, 57, 3881–3895. [Google Scholar] [CrossRef] [Green Version] - Tummuru, N.R.; Mishra, M.K.; Srinivas, S. Dynamic Energy Management of Renewable Grid Integrated Hybrid Energy Storage System. IEEE Trans. Ind. Electron.
**2015**, 62, 7728–7737. [Google Scholar] [CrossRef] - Abdelrazek, S.A.; Kamalasadan, S. Integrated PV Capacity Firming and Energy Time Shift Battery Energy Storage Management Using Energy-Oriented Optimization. IEEE Trans. Ind. Appl.
**2016**, 52, 2607–2617. [Google Scholar] [CrossRef] - Hou, R.; Nguyen, T.T.; Kim, H.M.; Song, H.; Qu, Y. An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications. Energies
**2017**, 10, 215. [Google Scholar] [CrossRef] [Green Version] - Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access
**2018**, 6, 35143–35164. [Google Scholar] [CrossRef] - Palizban, O.; Kauhaniemi, K. Energy storage systems in modern grids—Matrix of technologies and applications. J. Energy Storage
**2016**, 6, 248–259. [Google Scholar] [CrossRef] - Riffonneau, Y.; Bacha, S.; Barruel, F.; Ploix, S. Optimal Power Flow Management for Grid Connected PV Systems With Batteries. IEEE Trans. Sustain. Energy
**2011**, 2, 309–320. [Google Scholar] [CrossRef] - Sun, K.; Zhang, L.; Xing, Y.; Guerrero, J.M. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage. IEEE Trans. Power Electron.
**2011**, 26, 3032–3045. [Google Scholar] [CrossRef] [Green Version] - Wang, C.; Nehrir, M. Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Trans. Energy Convers.
**2008**, 23, 957–967. [Google Scholar] [CrossRef] - Abeywardana, D.B.W.; Hredzak, B.; Agelidis, V.G. Single-Phase Grid-Connected LiFePO
_{4}Battery— Supercapacitor Hybrid Energy Storage System With Interleaved Boost Inverter. IEEE Trans. Power Electron.**2015**, 30, 5591–5604. [Google Scholar] [CrossRef] - Bhattacharjee, A.K.; Kutkut, N.; Batarseh, I. Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Trans. Power Electron.
**2019**, 34, 1431–1445. [Google Scholar] [CrossRef] - Jayasinghe, S.D.G.; Vilathgamuwa, D.M.; Madawala, U.K. Diode-Clamped Three-Level Inverter-Based Battery/Supercapacitor Direct Integration Scheme for Renewable Energy Systems. IEEE Trans. Power Electron.
**2011**, 26, 3720–3729. [Google Scholar] [CrossRef] - Vechiu, I.; Etxeberria, A.; Camblong, H.; Vinassa, J.M. Three-level Neutral Point Clamped Inverter Interface for flow battery/supercapacitor Energy Storage System used for microgrids. In Proceedings of the 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 5–7 December 2011; pp. 1–6. [Google Scholar]
- Teymour, H.R.; Sutanto, D.; Muttaqi, K.M.; Ciufo, P. Solar PV and Battery Storage Integration using a New Configuration of a Three-Level NPC Inverter With Advanced Control Strategy. IEEE Trans. Energy Convers.
**2014**, 29, 354–365. [Google Scholar] - Tabart, Q.; Vechiu, I.; Etxeberria, A.; Bacha, S. Hybrid Energy Storage System Microgrids Integration for Power Quality Improvement Using Four-Leg Three-Level NPC Inverter and Second-Order Sliding Mode Control. IEEE Trans. Ind. Electron.
**2018**, 65, 424–435. [Google Scholar] [CrossRef] - Cintron-Rivera, J.G.; Li, Y.; Jiang, S.; Peng, F.Z. Quasi-Z-Source inverter with energy storage for Photovoltaic power generation systems. In Proceedings of the Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 401–406. [Google Scholar]
- Ge, B.; Abu-Rub, H.; Peng, F.Z.; Lei, Q.; de Almeida, A.T.; Ferreira, F.J.T.E.; Sun, D.; Liu, Y. An Energy-Stored Quasi-Z-Source Inverter for Application to Photovoltaic Power System. IEEE Trans. Ind. Electron.
**2013**, 60, 4468–4481. [Google Scholar] [CrossRef] - Vilathgamuwa, D.M.; Jayasinghe, S.D.G.; Madawala, U.K. Battery clamped three-level inverter for renewable energy systems. In Proceedings of the IECON 2011 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3105–3110. [Google Scholar]
- Vasiladiotis, M.; Rufer, A. Analysis and Control of Modular Multilevel Converters With Integrated Battery Energy Storage. IEEE Trans. Power Electron.
**2015**, 30, 163–175. [Google Scholar] [CrossRef] - Teston, S.A.; Mezaroba, M.; Rech, C. ANPC Inverter With Integrated Secondary Bidirectional Dc Port for ESS Connection. IEEE Trans. Ind. Appl.
**2019**, 55, 7358–7367. [Google Scholar] [CrossRef] - Bala, S.; Tengner, T.; Rosenfeld, P.; Delince, F. The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012. [Google Scholar]
- Teston, S.A.; Vilerá, K.V.; Mezaroba, M.; Rech, C. Feedforward Compensation of the ESS Low-Frequency Current Ripple in the Three-Ports ANPC Converter. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019. [Google Scholar]
- Bruckner, T.; Bernet, S.; Guldner, H. The active NPC converter and its loss-balancing control. IEEE Trans. Ind. Electron.
**2005**, 52, 855–868. [Google Scholar] [CrossRef] - Jiao, Y.; Lee, F.C. New Modulation Scheme for Three-Level Active Neutral-Point-Clamped Converter With Loss and Stress Reduction. IEEE Trans. Ind. Electron.
**2015**, 62, 5468–5479. [Google Scholar] [CrossRef] - Celanovic, N.; Boroyevich, D. A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans. Power Electron.
**2000**, 15, 242–249. [Google Scholar] [CrossRef] - Wang, C.; Li, Y. Analysis and Calculation of Zero-Sequence Voltage Considering Neutral-Point Potential Balancing in Three-Level NPC Converters. IEEE Trans. Ind. Electron.
**2010**, 57, 2262–2271. [Google Scholar] [CrossRef] - Vilerá, K.V.; Rech, C.; Teston, S.A. Analysis of Neutral-Point Voltage Balancing in Three-Ports Active Neutral- Point-Clamped Converter. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019. [Google Scholar]
- Zhang, Y.; Hu, C.; Wang, Q.; Zhou, Y.; Sun, Y. Neutral-Point Potential Balancing Control Strategy for Three-Level ANPC Converter Using SHEPWM Scheme. Energies
**2019**, 12, 4328. [Google Scholar] [CrossRef] [Green Version] - Sano, K.; Fujita, H. Voltage-Balancing Circuit Based on a Resonant Switched-Capacitor Converter for Multilevel Inverters. IEEE Trans. Ind. Appl.
**2008**, 44, 1768–1776. [Google Scholar] [CrossRef] - Luo, S.; Wu, F.; Zhao, K. Modified Single-Carrier Multilevel SPWM and Online Efficiency Enhancement for Single-Phase Asymmetrical NPC Grid-Connected Inverter. IEEE Trans. Ind. Inf.
**2020**, 16, 3157–3167. [Google Scholar] [CrossRef] - Newton, C.; Sumner, M. Neutral point control for multi-level inverters: Theory, design and operational limitations. In Proceedings of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, New Orleans, LA, USA, 5–9 October 1997. [Google Scholar]
- Barater, D.; Concari, C.; Buticchi, G.; Gurpinar, E.; De, D.; Castellazzi, A. Performance Evaluation of a Three-Level ANPC Photovoltaic Grid-Connected Inverter With 650-V SiC Devices and Optimized PWM. IEEE Trans. Ind. Appl.
**2016**, 52, 2475–2485. [Google Scholar] [CrossRef] [Green Version] - Teymour, H.R.; Sutanto, D.; Muttaqi, K.M.; Ciufo, P. A Novel Modulation Technique and a New Balancing Control Strategy for a Single-Phase Five-Level ANPC Converter. IEEE Trans. Ind. Appl.
**2015**, 51, 1215–1227. [Google Scholar] [CrossRef]

**Figure 1.**Overview of the main applications of energy storage systems (ESSs) [6].

**Figure 2.**Main configurations for connecting the energy storage system (ESS). (

**a**) Connection to the DC bus of the inverter through a bidirectional DC-DC converter; (

**b**) Connection to the AC bus through a dedicated inverter; (

**c**) Connection using a DC-DC multiport converter (MPC); (

**d**) Direct connection to the DC bus; and (

**e**) Direct connection to the inverter topology.

**Figure 5.**Modulation regions considering ESS state of charge (SOC) variation: (

**a**) dedicated NPC inverter and (

**b**) ANPC-3P inverter.

**Figure 7.**Control system block diagram. The control subsystems of the secondary DC and AC ports are represented in blue and red colors, respectively.

**Figure 8.**(

**a**) Root locus of the open-loop transfer function C

_{iE}(s)G

_{iE}(s). (

**b**) Bode diagram of the open-loop transfer function considering only a PI controller and a PI+resonant control action.

**Figure 10.**Experimental results showing the effect of the resonant control action and step responses of i

_{E}. (

**a**) i

_{E}step response for the ESS commutation from floating to discharging mode. (

**b**) i

_{E}response for the ESS commutation from floating to charging mode.

**Figure 11.**Experimental results showing the step responses of currents i

_{E}and i

_{g}under different operating modes. (

**a**) P

_{ac}> 0 and ESS in floating, charging, and discharging modes. (

**b**) ESS under floating and charging modes with P

_{ac}> 0 and ESS under charging mode with the grid supplying its power (P

_{ac}< 0).

State | Switches | ${\mathit{v}}_{\mathit{x}}$ | ${\mathit{v}}_{\mathit{AB}}$ | |||||
---|---|---|---|---|---|---|---|---|

${\mathrm{S}}_{\mathbf{1}}$ | ${\mathrm{S}}_{\mathbf{2}}$ | ${\mathrm{S}}_{\mathbf{3}}$ | ${\mathrm{S}}_{\mathbf{4}}$ | ${\mathrm{S}}_{\mathbf{5}}$ | ${\mathrm{S}}_{\mathbf{6}}$ | |||

P | 1 | 1 | 0 | 0 | 0 | 1 | ${V}_{dc}/2$ | ${V}_{dc}/2$ |

0U4 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

0U3 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |

0U1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | ${V}_{dc}/2$ |

0UL | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |

0L1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | ${V}_{dc}/2$ |

0L3 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

0L4 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |

N | 0 | 0 | 1 | 1 | 1 | 0 | $-{V}_{dc}/2$ | ${V}_{dc}/2$ |

Parameter | Value |
---|---|

Output AC power (${P}_{o}$) | 1 kW |

ESS power (${P}_{E}$) | 1 kW |

Dc bus voltage (${V}_{dc}$) | 720 V |

Dc bus capacitance (${C}_{1}={C}_{2}$) | 500 $\mathsf{\mu}$F |

ESS voltage (${V}_{E}$) | 23 × 12 V VRLA batteries |

ESS internal resistance (${R}_{E}$) | 0.5 $\mathrm{\Omega}$ |

Ac voltage (${V}_{ac}$) | 127 V rms |

Ac filter inductor (${L}_{ac}$) | 6 mH (${R}_{s}=$ 0.3 $\mathrm{\Omega}$) |

ESS filter (${L}_{E}$) | 8 mH (${R}_{LE}=$ 0.5 $\mathrm{\Omega}$) |

Ac frequency (${f}_{ac}$) | 60 Hz |

Carrier frequency (${f}_{c}$) | 10.26 kHz |

Amplitude modulation index (${m}_{a}$) | 0.5 |

${\mathit{b}}_{\mathit{I}}=({\mathit{i}}_{\mathit{E}}>0)$ | ${\mathit{b}}_{\mathit{V}}=({\mathit{v}}_{\mathit{C}1}>{\mathit{v}}_{\mathit{C}2})$ | ${\mathit{b}}_{\mathit{dc}}={\mathit{b}}_{\mathit{I}}\oplus {\mathit{b}}_{\mathit{V}}$ | State |
---|---|---|---|

0 | 0 | 0 | 0U1 |

0 | 1 | 1 | 0L1 |

1 | 0 | 1 | 0L1 |

1 | 1 | 0 | 0U1 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Teston, S.A.; Vilerá, K.V.; Mezaroba, M.; Rech, C.
Control System Development for the Three-Ports ANPC Converter. *Energies* **2020**, *13*, 3967.
https://doi.org/10.3390/en13153967

**AMA Style**

Teston SA, Vilerá KV, Mezaroba M, Rech C.
Control System Development for the Three-Ports ANPC Converter. *Energies*. 2020; 13(15):3967.
https://doi.org/10.3390/en13153967

**Chicago/Turabian Style**

Teston, Silvio Antonio, Kaio Vinicius Vilerá, Marcello Mezaroba, and Cassiano Rech.
2020. "Control System Development for the Three-Ports ANPC Converter" *Energies* 13, no. 15: 3967.
https://doi.org/10.3390/en13153967