Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Orbital Energy Calculations
2.2. CEMAImTFSI and Electrolyte Preparation
2.3. Cell Assembly
2.4. Electrochemical Test
2.5. Electrodes Characterization
3. Results and Discussion
3.1. Calculation of the HOMO and LUMO Energy Values and the Li+ Binding Energy Values of CEMAImTFSI
3.2. Ionic Conductivities and Viscosities of the Electrolyte
3.3. Electrochemical Properties of Cells
3.4. LiNi0.5Mn1.5O4/Li Cell Rate Performance Test
4. Surface Analysis of Electrode with Additives
4.1. Scanning Electron Microscopy Analysis of LiNi0.5Mn1.5O4
4.2. X-Ray Photoelectron Spectroscopy Analysis of LiNi0.5Mn1.5O4 Cathode
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 2002, 148, 405–416. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, T.; Zhang, Y.; Yan, L.; Xie, J.; Mao, S.S. Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane. J. Power Sources 2016, 323, 134–141. [Google Scholar] [CrossRef]
- Botte, G.G.; White, R.E.; Zhang, Z.J. Thermal stability of LiPF6–EC: EMC electrolyte for lithium ion batteries. J. Power Source 2001, 97, 570–575. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P.C.; Curtiss, L.A.; Amine, K.J.E.; Science, E. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 2013, 6, 1806–1810. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Z.; Amine, K.J. Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem. Commun. 2013, 35, 76–79. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Liu, J.; Jing, J.; Li, X.; Cui, X.J.E.A. Using a lithium difluoro (sulfato) borate additive to improve electrochemical performance of electrolyte based on lithium bis (oxalate) borate for LiNi0.5Mn1.5O4/Li cells. Electrochim. Acta 2015, 155, 321–326. [Google Scholar] [CrossRef]
- Yi, T.-F.; Xie, Y.; Ye, M.-F.; Jiang, L.-J.; Zhu, R.-S.; Zhu, Y.-R.J.I. Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 2011, 17, 383–389. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jin, B.-S.; Doh, C.-H.; Bae, D.-S.; Kim, H.-S.J. Improved electrochemical performance of doped-LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electron. Mater. Lett. 2013, 9, 851–854. [Google Scholar] [CrossRef]
- Wei, W.; Heng, L.; Yan, W.; Chao, G.; Zhang, J.J. Effects of chromium doping on performance of LiNi0.5Mn1.5O4 cathode material. Trans. Nonferrous Met. Soc. China 2013, 23, 2066–2070. [Google Scholar]
- Li, J.C.; Ma, C.; Chi, M.F.; Liang, C.D.; Dudney, N.J. Solid Electrolyte: The Key for High-Voltage Lithium Batteries. Adv. Energy Mater. 2015, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Liao, Y.; Zhang, Z.; Zhu, J.; Ren, F.; He, H.; Xiang, Y.; Zheng, Y.; Yang, Y. Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries. J. Energy Chem. 2020, 42, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Ushigoe, Y.; Yoshitake, H.; Yoshio, M.J. Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance. J. Power Sources 2006, 153, 328–335. [Google Scholar] [CrossRef]
- Lee, H.; Han, T.; Cho, K.Y.; Ryou, M.-H.; Lee, Y.M. Dopamine as a novel electrolyte additive for high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 21366–21372. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, L.; Fan, W.; Liu, J.; Ouyang, L.; Yang, L.; Zhu, M. 3, 3′-(Ethylenedioxy) dipropiononitrile as an electrolyte additive for 4.5 V LiNi1/3Co1/3Mn1/3O2/graphite cells. ACS Appl. Mater. Interfaces 2017, 9, 9630–9639. [Google Scholar] [CrossRef]
- Rong, H.; Xu, M.; Zhu, Y.; Xie, B.; Lin, H.; Liao, Y.; Xing, L.; Li, W.J. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery. J. Power Sources 2016, 332, 312–321. [Google Scholar] [CrossRef]
- Haregewoin, A.M.; Wotango, A.S.; Hwang, B.J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives. Energy Environ. Sci. 2016, 9, 1955–1988. [Google Scholar] [CrossRef]
- Park, E.J.; Kwon, Y.-G.; Yoon, S.; Cho, K.Y. Synergistic high-voltage lithium ion battery performance by dual anode and cathode stabilizer additives. J. Power Sources 2019, 441. [Google Scholar] [CrossRef]
- Han, S.Y.; Zhang, H.; Fan, C.J.; Fan, W.Z.; Yu, L. 1,4-Dicyanobutane as a film-forming additive for high-voltage in lithium-ion batteries. Solid State Ion. 2019, 337, 63–69. [Google Scholar] [CrossRef]
- Swiderska-Mocek, A.; Lewandowski, A.; Kurc, B.J.J. Properties of LiNiO2 cathode and graphite anode in N-methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide. J. Solid State Electrochem. 2012, 16, 673–679. [Google Scholar] [CrossRef]
- Rangasamy, V.S.; Thayumanasundaram, S.; Locquet, J.P. Ionic liquid electrolytes based on sulfonium cation for lithium rechargeable batteries. Electrochim. Acta 2019, 328, 9. [Google Scholar] [CrossRef]
- Qi, H.; Ren, Y.; Guo, S.; Wang, Y.; Li, S.; Hu, Y.; Yan, F. High-voltage Resistant Ionic Liquids for Lithium-ion Batteries. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Ruther, T.; Bhatt, A.I.; Best, A.S.; Harris, K.R.; Hollenkamp, A.F. Electrolytes for Lithium (Sodium) Batteries Based on Ionic Liquids: Highlighting the Key Role Played by the Anion. Batter. Supercaps 2020. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Theerthagiri, J.; Vikraman, D.; Yim, C.-J.; Hussain, S.; Sharma, R.; Maiyalagan, T.; Qin, J.; Kim, H.-S. Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications. Polymers 2020, 12, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandian, S.; Hariharan, K.S.; Adiga, S.P.; Kolake, S.M. Evaluation of Electrochemical Stability and Li-ion Interactions in Ether Functionalized Pyrrolidinium and Phospholanium Ionic Liquids. J. Electrochem. Soc. 2020, 167, 8. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.J.; Rath, P.C.; Patra, J.; Bresser, D.; Passerini, S.; Umesh, B.; Dong, Q.F.; Lee, T.C.; Chang, J.K. Composition Modulation of Ionic Liquid Hybrid Electrolyte for 5 V Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 42049–42056. [Google Scholar] [CrossRef]
- Javadian, S.; Salimi, P.; Gharibi, H.; Fathollahi, A.; Kowsari, E.; Kakemam, J. Effect of imidazolium-based ionic liquid as electrolyte additive on electrochemical performance of 18650 cylindrical Li-ion batteries at room and 60 degrees C temperatures. J. Iran Chem. Soc. 2019, 16, 2123–2134. [Google Scholar] [CrossRef]
- Hosseini-Bab-Anari, E.; Navarro-Suarez, A.M.; Moth-Poulsen, K.; Johansson, P. Ionic liquid based battery electrolytes using lithium and sodium pseudo-delocalized pyridinium anion salts. Phys. Chem. Chem. Phys. 2019, 21, 18393–18399. [Google Scholar] [CrossRef]
- Zhang, S.J.; Li, J.H.; Jiang, N.Y.; Li, X.Q.; Pasupath, S.; Fang, Y.X.; Liu, Q.B.; Dang, D. Rational Design of an Ionic Liquid-Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium-Ion Batteries. Chem.-Asian J. 2019, 14, 2810–2814. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Domi, Y.; Usui, H.; Shimizu, M.; Morishita, S.; Yodoya, S.; Sakata, T.; Sakaguchi, H. Effect of Film-Forming Additive in Ionic Liquid Electrolyte on Electrochemical Performance of Si Negative-Electrode for LIBs. J. Electrochem. Soc. 2019, 166, A268–A276. [Google Scholar] [CrossRef] [Green Version]
- Yim, T.; Kwon, M.S.; Mun, J.; Lee, K.T. Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes. Isr. J. Chem. 2015, 55, 586–598. [Google Scholar] [CrossRef]
- Mun, J.; Yim, T.; Park, K.; Ryu, J.H.; Kim, Y.G.; Oh, S.M. Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature. J. Electrochem. Soc. 2011, 158, A453–A457. [Google Scholar] [CrossRef]
- Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M. On the application of ionic liquids for rechargeable Li batteries: High voltage systems. J. Power Sources 2009, 189, 331–336. [Google Scholar] [CrossRef]
- Halls, M.D.; Tasaki, K.J. High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives. J. Power Sources 2010, 195, 1472–1478. [Google Scholar] [CrossRef]
- Tasaki, K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 2920–2933. [Google Scholar] [CrossRef]
- Rakhi, R.; Suresh, C.H. A DFT study on 1,4-dihydro-1,4-azaborinine annulated linear polyacenes: Absorption spectra, singlet-triplet energy gap, aromaticity, and HOMO-LUMO energy modulation. J. Comput. Chem. 2017, 38, 2232–2240. [Google Scholar] [CrossRef]
- Han, Y.K.; Yoo, J.; Yim, T. Computational screening of phosphite derivatives as high-performance additives in high-voltage Li-ion batteries. RSC Adv. 2017, 7, 20049–20056. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ma, G.; Che, H.; Jiang, Z.; Shen, M.; Dong, J.; Chen, H.; Ma, Z. Application of density functional theory in the design of high potential electrolyte. Chem. Ind. Eng. Prog. 2019, 38, 3253–3264. [Google Scholar]
- Chen, J.H.; He, L.M.; Wang, R.L. Connection of DFT Molecular Orbital Eigenvalues with the Observable Oxidation Potentials/Oxidation Energies. J. Phys. Chem. A 2013, 117, 5132–5139. [Google Scholar] [CrossRef]
- Yue, H.Y.; Dong, Z.Y.; Yang, Y.G.; Han, Z.L.; Wang, L.; Zhang, H.S.; Yin, Y.H.; Zhang, X.G.; Zhang, Z.T.; Yang, S.T. Fluorophosphorus derivative forms a beneficial film on both electrodes of high voltage lithium-ion batteries. J. Colloid Interface Sci. 2020, 559, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Wang, C.; Xu, M.; Li, W.; Cai, Z.J. Theoretical study on reduction mechanism of 1, 3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery. J. Power Sources 2009, 189, 689–692. [Google Scholar] [CrossRef]
- Wang, Y.; Balbuena, P.B. Associations of Alkyl Carbonates: Intermolecular C−H⊙⊙⊙ O Interactions. J. Phys. Chem. A 2001, 105, 9972–9982. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.S.; Lee, H.; Han, Y.K. Low Li+ binding affinity: An important characteristic for additives to form solid electrolyte interphases in Li-ion batteries. J. Power Sources 2011, 196, 5109–5114. [Google Scholar] [CrossRef]
- Han, Y.-K.; Jung, J.; Yu, S.; Lee, H.J. Understanding the characteristics of high-voltage additives in Li-ion batteries: Solvent effects. J. Power Sources 2009, 187, 581–585. [Google Scholar] [CrossRef]
HOMO | LUMO | |
---|---|---|
CEMAImTFSI | −7.6081 | −2.0455 |
EC | −8.4669 | −0.2838 |
DMC | −8.1591 | 0.1298 |
VC | −7.4277 | −4.9170 |
Electrolyte | Rs | Rf | Rct |
---|---|---|---|
L0 | 4.39 | 45.53 | 115.67 |
L5 | 3.82 | 37.63 | 94.38 |
L10 | 2.81 | 26.28 | 78.69 |
L15 | 3.58 | 35.02 | 133.91 |
L20 | 4.61 | 43.75 | 176.64 |
Electrolyte | φa | φb | Δφ |
---|---|---|---|
L0 | 4.97 | 4.54 | 0.43 |
L5 | 4.87 | 4.52 | 0.35 |
L10 | 4.86 | 4.54 | 0.32 |
L15 | 4.92 | 4.48 | 0.44 |
L20 | 4.94 | 4.46 | 0.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhao, Y.; Huo, Y. Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries. Energies 2020, 13, 2879. https://doi.org/10.3390/en13112879
Zhang W, Zhao Y, Huo Y. Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries. Energies. 2020; 13(11):2879. https://doi.org/10.3390/en13112879
Chicago/Turabian StyleZhang, Wenlin, Yongqi Zhao, and Yu Huo. 2020. "Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries" Energies 13, no. 11: 2879. https://doi.org/10.3390/en13112879
APA StyleZhang, W., Zhao, Y., & Huo, Y. (2020). Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries. Energies, 13(11), 2879. https://doi.org/10.3390/en13112879