# Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods and Principles

#### 2.1. Power Generation Principle

#### 2.2. Design Principle of Experimental Platform

#### 2.3. Mathematical Modeling Analysis on the Main Parts of the Experimental Platform

#### 2.4. Establish the Control Strategy

## 3. Results and Discussion

#### 3.1. Experimental Setup

#### 3.2. Displacement Control Result Analysis of Experimental Device

#### 3.3. Working Characteristic Analysis of Hydraulic Transmission System Under Sinusoidal Displacement

#### 3.4. Working Characteristic Analysis of Hydraulic Transmission System Under Nonsinusoidal Displacement

#### 3.5. Working Characteristic Analysis of Hydraulic Transmission System Under Different Loads

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lin, Y.; Bao, J.; Liu, H.; Li, W.; Tu, L.; Zhang, D. Review of hydraulic transmission technologies for wave power generation. Renew. Sustain. Energy Rev.
**2015**, 50, 194–203. [Google Scholar] [CrossRef] - Cargo, C. Design and Control of Hydraulic Power Take-Off for Wave Energy Converters. Ph.D. These, University of Bath, Bath, UK, 2012. [Google Scholar]
- Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Soares, C.G. Design tradeoffs of an oil-hydraulic Power Take-Off for Wave Energy Converters. Renew. Energy.
**2018**, 129 Pt A, 245–259. [Google Scholar] [CrossRef] - Ricci, P.; Lopez, J.; Santos-Mugica, M.; Ruiz-Minguela, P.; Villate, J.; Salcedo, F.; Falcaão, A. Control strategies for a wave energy converter connected to a hydraulic power take-off. IET Renew. Power Gener.
**2011**, 5, 234–244. [Google Scholar] [CrossRef] - Hansen, R.H.; Kramer, M.; Vidal, E.; Hansen, R.H.; Kramer, M.M.; Vidal, E. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter. Energies
**2013**, 6, 4001–4044. [Google Scholar] [CrossRef] - Zou, S.; Abdelkhalik, O. Control of Wave Energy Converters with Discrete Displacement Hydraulic Power Take-off Units. J. Mar. Sci. Eng.
**2018**, 6, 1–24. [Google Scholar] [CrossRef][Green Version] - Gaspar, J.F.; Kamarlouei, M.; Sinha, A.; Xu, H.; Calvário, M.; Faÿ, F.X.; Robles, E.; Soares, C.G. Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters. Renew. Energy
**2016**, 97, 769–783. [Google Scholar] [CrossRef] - Do, H.T.; Dang, T.D.; Ahn, K.K. A multi-point-absorber wave-energy converter for the stabilization of output power. Ocean Eng.
**2018**, 161, 337–349. [Google Scholar] [CrossRef] - Kim, S.J.; Koo, W.; Shin, M.J. Numerical and experimental study on a hemispheric point-absorber-type wave energy converter with a hydraulic power take-off system. Renew. Energy
**2019**, 135, 1260–1269. [Google Scholar] [CrossRef] - Wang, K.; Sheng, S.; Zhang, Y.; Ye, Y.; Jiang, J.; Lin, H.; Huang, Z.; Wang, Z.; You, Y. Principle and control strategy of pulse width modulation rectifier for hydraulic power generation system. Renew. Energy
**2019**, 135, 1200–1206. [Google Scholar] [CrossRef] - Penalba, M.; Giorgi, G.; Ringwood, J.V. Mathematical modelling of wave energy converters: A review of nonlinear approaches. Renew. Sustain. Energy Rev.
**2017**, 78, 1188–1207. [Google Scholar] [CrossRef][Green Version] - Pedro, B.; Cândida, M. Hydraulic Power Take-off and Buoy Geometries Charac-terisation for a Wave Energy Converter. Energy Power Eng.
**2013**, 5, 72–77. [Google Scholar] - Babarit, A.; Guglielmi, M.; Clément, A.H. Declutching control of a wave energy converter. Ocean Eng.
**2009**, 36, 1015–1024. [Google Scholar] [CrossRef][Green Version] - Falcão, A.F.O. Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator. Ocean Eng.
**2007**, 34, 2021–2032. [Google Scholar] - Yang, L.; Hals, J.; Moan, T. A wear model for assessing the reliability of wave energy converter in heave with hydraulic power take-off. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 874–881. [Google Scholar]
- Limin, Y.; Torgeir, M. Dynamic analysis of wave energy converter by incorporating the effect of hydraulic transmission lines. Ocean Eng.
**2011**, 38, 1849–1860. [Google Scholar] - Shi, H.; Cao, F.; Liu, Z.; Qu, N. Theoretical develop on the power take-off estimation of heaving buoy wave energy converter. Renew. Energy
**2016**, 86, 441–448. [Google Scholar] [CrossRef] - Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Soares, C.G. Power take-off concept for wave energy converters based on oil-hydraulic transformer units. Renew. Energy
**2016**, 86, 1232–1246. [Google Scholar] [CrossRef] - Li, S.Z.; Wei, J.H.; Guo, K.; Zhu, W. Nonlinear Robust Prediction Control of Hybrid Active—Passive Heave Compensator with Extended Disturbance Observer. IEEE Trans. Ind. Electron.
**2017**, 64, 6684–6694. [Google Scholar] [CrossRef] - Yin, X.-X.; Lin, Y.; Li, W.; Liu, H.-W.; Gu, Y.-J. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. Isa Trans.
**2015**, 88, 2316–2326. [Google Scholar] [CrossRef] [PubMed] - Lederer, J.; Vastesaeger, M. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines. ISA Trans.
**2015**, 58, 629–634. [Google Scholar] - Van, T.L.; Nguyen BP, N.T.; Truong, T.H.; Trang, T.T. Improved Pitch Angle Control for Variable-Speed Wind Turbine System. Lect. Notes Electr. Eng.
**2014**, 282, 103–112. [Google Scholar]

**Figure 1.**The heaving float wave energy power generation device. (

**a**) Bracing and agent architectures, (

**b**) work principle sketch diagram.

**Figure 3.**Schematic diagram of wave energy power experimental platform. (

**a**) The float motion simulate system, (

**b**) hydraulic transmission and electric power processing system.

**Figure 5.**Design diagram of displacement tracking control strategy based on back-stepping and adaptive control methods.

**Figure 6.**Wave power experiment device and experimental principle. (

**a**) Wave power experimental device, (

**b**) block diagram of the experimental setup.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, W.; Li, S.; Liu, Y.; Li, D.; He, Q. Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform. *Energies* **2020**, *13*, 2876.
https://doi.org/10.3390/en13112876

**AMA Style**

Zhang W, Li S, Liu Y, Li D, He Q. Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform. *Energies*. 2020; 13(11):2876.
https://doi.org/10.3390/en13112876

**Chicago/Turabian Style**

Zhang, Wei, Shizhen Li, Yanjun Liu, Detang Li, and Qin He. 2020. "Optimal Control for Hydraulic Cylinder Tracking Displacement of Wave Energy Experimental Platform" *Energies* 13, no. 11: 2876.
https://doi.org/10.3390/en13112876