Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene
Abstract
:1. Introduction
2. Methodology
2.1. In Situ Research
2.1.1. Determining the Emissivity of the Panels
2.1.2. Field Study
- Thermal imaging camera Flir E95 of the temperature measurement range of −20 °C–1500 °C, resolution of 161,472 pixels, thermal sensitivity for the 42° × 32° lens of <30 mK, spatial IFOV resolution for 42° × 32° lens of 2.41 mrad/pixel and fractional spectral sensitivity of 7.5–14 μm.
- Solar data logger of the measuring range of 0–1999 W/m2, resolution of 1 W/m2, operating temperature of 0 °C–50 °C, storage temperature of −10 °C– 60 °C, operation in the relative air humidity of 10%–90% and storage in the relative air humidity of 10%–80%.
- Electronic thermometer for measuring temperature inside the polystyrene boards equipped with a stainless steel probe skewer of the length of 0.15 m and temperature measurement range of −50 °C–300 °C.
- Stationary stand—polystyrene boards glued to the wall with polyurethane adhesive (Figure 2a).
- Mobile stand—a support structure made of 0.018 m-thick boards, wooden slats, hinges and strings, was prepared for each of the polystyrene boards. The structure enabled us to position the tested polystyrene board vertically to the base surface (Figure 2b).
2.1.3. Meteorological Measurements
2.2. Laboratory Tests
2.2.1. Solar Radiation Stimulator
2.2.2. Measurement in Laboratory Conditions
3. Results and Discussion
3.1. In Situ Tests
3.2. Laboratory Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berardi, U. A cross-country comparison of the building Energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Caniato, M.; Gasparella, A. Discriminating people’s attitude towards building physical features in sustainable and conventional buildings. Energies 2019, 12, 1429. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Zhang, B.; Cremaschi, L. Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Build. Environ. 2017, 123, 50–65. [Google Scholar] [CrossRef]
- Ciulla, G.; Galatioto, A.; Ricciu, R. Energy and economic analysis and feasibility of retrofit actions in Italian residential historical buildings. Energy Build. 2016, 128, 649–659. [Google Scholar] [CrossRef]
- Orlik-Kożdoń, B.; Nowoświat, A. Modelling and testing of a granular insulating material. J. Build. Phys. 2018, 42, 6–15. [Google Scholar] [CrossRef]
- Hansen, T.K.; Bjarløv, S.P.; Peuhkuri, R. The effects of wind-driven rain on the hygrothermal conditions behind wooden beam ends and at the interfaces between internal insulation and existing solid masonry. Energy Build. 2019, 196, 255–268. [Google Scholar] [CrossRef]
- Manzan, M.; De Zorzi, E.Z.; Lorenzi, W. Numerical simulation and sensitivity analysis of a steel framed internal insulation system. Energy Build. 2018, 158, 1703–1710. [Google Scholar] [CrossRef] [Green Version]
- Orlik-Kożdoń, B.; Steidl, T. Impact of internal insulation on the hygrothermal performance of brick wall. J. Build. Phys. 2017, 41, 120–134. [Google Scholar] [CrossRef]
- Nowoświat, A.; Pokorska-Silva, I. The influence of thermal mass on the cooling off process of buildings. Period. Polytech. Civ. Eng. 2018, 62, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Krause, P. The numeric calculation of selected thermal bridges in the walls of AAC. Cement Wapno Beton 2017, 22, 371–380. [Google Scholar]
- Pokorska-Silva, I.; Nowoświat, A.; Fedorowicz, L. Identification of thermal parameters of a building envelope based on the cooling process of a building object. J. Build. Phys. 2019. in Press. [Google Scholar] [CrossRef]
- Khoukhi, M. The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building Energy performance. Energy Build. 2018, 169, 228–235. [Google Scholar] [CrossRef]
- Havinga, L.; Schellen, H. The impact of convective vapour transport on the hygrothermal risk of the internal insulation of post-war lightweight prefab housing. Energy Build. 2019, 204, 109418. [Google Scholar] [CrossRef]
- Budaiwi, I.; Abdou, A. Effect of thermal conductivity change of moist fibrous insulation on Energy performance of buildings under hot-humid conditions. Energy Build. 2013, 60, 388–399. [Google Scholar] [CrossRef]
- Kontoleon, K.J.; Giarma, G. Dynamic thermal response of building material layers in aspect of their moisture content. Appl. Energy 2016, 170, 76–91. [Google Scholar] [CrossRef]
- Orlik-Kozdoń, B.; Nowoswiat, A.; Krause, P.; Ponikiewski, T. A numerical and experimental investigation of temperature field in place of anchors in ETICS System. Constr. Build. Mater. 2018, 167, 553–565. [Google Scholar] [CrossRef]
- Nowoświat, A.; Skrzypczyk, J.; Krause, P.; Steidl, T.; Winkler-Skalna, A. Estimation of thermal transmittance based on temperature measurements with the application of perturbation numbers. Heat Mass Transf. 2018, 54, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.M.K.W.; Jayasinghe, C.; Jayasinghe, M.T.R. A comparative embodied Energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build. 2017, 135, 85–94. [Google Scholar] [CrossRef]
- Firlag, S.; Piasecki, M. NZEB renovation definition in a heating dominated climate: Case study of Poland. Appl. Sci. 2018, 8, 1605. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, A.; Deak, I.; Berardi, U. Thermal Characterization of different graphite polystyrene. Int. Rev. Appl. Sci. Eng. 2018, 9, 163–168. [Google Scholar] [CrossRef]
- Ye, R.; Lin, W.; Yuan, K.; Fang, X.; Zhang, Z. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2 6H2O/expanded graphite composite phase material. Appl. Energy 2017, 193, 325–335. [Google Scholar] [CrossRef]
- Faravelli, T.; Pinciroli, M.; Pisano, F.; Bozzano, G.; Dente, M.; Ranzi, E. Thermal degradation of polystyrene. J. Anal. Appl. Pyrolysis 2001, 60, 103–121. [Google Scholar] [CrossRef]
- Kussauer, R.; Ruprecht, M. Die häufigsten Mängel bei Beschichtungen und Wärmedämm-Verbundsystemen: Erkennen, Vermeiden, Beheben; Rudolf Müller: Köln, Germany, 2014. [Google Scholar]
- Mehta, S.; Biederman, S.; Shivkumar, S. Thermal degradation of foamed polystyrene. J. Mater. Sci. 1995, 30, 2944–2949. [Google Scholar] [CrossRef]
- Shu-Kai, Y.; Chien-Hsiung, H.; Kuo-Chung, C.; Tsu-Huang, C.; Weng-Jeng, G.; Sea-Fues, W. Effect of dispersion method and process variables on the properties of supercritical CO2 foamed polystyrene/graphite nanocomposite foam. Polym. Eng. Sci. 2013, 53, 2061–2072. [Google Scholar]
- Tran, M.P.; Gong, P.; Detrembleur, C.; Thomassin, J.M.; Buahom, P.; Saniei, M.; Kenig, S.; Parka, C.B.; Lee, S.E. Reducing Thermal Conductivity of Polymeric Foams with High Volume Expansion Made From Polystyrene/Expanded Graphite. PIERS Online 2016, 4, 1870–1882. [Google Scholar]
- Vlcek, J. A field method for determination of emissivity with imaging radiometers. Photogramm. Eng. Remote Sens. 1982, 48, 609–614. [Google Scholar]
Panel Type | TMAX (°C) | TMIN (°C) | TAVR (°C) |
---|---|---|---|
Panel B | 77.4 | 59.9 | 72.5 |
Panel A | 39.7 | 33.0 | 34.2 |
Panel C | 34.8 | 29.0 | 29.8 |
Panel Type | TMAX (°C) | TMIN (°C) | TAVR (°C) |
---|---|---|---|
Panel B | 68.7 | 56.6 | 63.6 |
Panel A | 36.7 | 29.6 | 30.7 |
Panel C | 33.6 | 27.2 | 27.9 |
Panel Type | TMAX (°C) | TMIN (°C) | TAVR (°C) |
---|---|---|---|
Intensity ls = 640 W/m2 | |||
Panel B | 71.7 | 59.2 | 67.2 |
Panel C | 31.0 | 26.4 | 27.0 |
Intensity ls = 950 W/m2 | |||
Panel B | 84.4 | 67.0 | 80.2 |
Panel C | 32.0 | 26.1 | 26.8 |
Intensity ls = 1008 W/m2 | |||
Panel B | 93.4 | 74.6 | 89.0 |
Panel C | 36.4 | 29.7 | 30.4 |
Panel Type | TMAX (°C) | TMIN (°C) | TAVR (°C) |
---|---|---|---|
Wind speed v = 1 m/s | |||
Panel B | 93.2 | 74.9 | 88.6 |
Panel C | 35.4 | 29.9 | 30.4 |
Wind speed v = 3 m/s | |||
Panel B | 81.4 | 61.0 | 75.8 |
Panel C | 33.6 | 29.4 | 29.8 |
Wind speed v = 5 m/s | |||
Panel B | 71.0 | 54.3 | 66.3 |
Panel C | 32.5 | 29.6 | 29.9 |
Panel Type | TMAX (°C) | TMIN (°C) | TAVR (°C) |
---|---|---|---|
Panel B | 101.9 | 72.7 | 91.6 |
Panel C | 44.8 | 35.8 | 37.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, P.; Nowoświat, A. Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene. Energies 2020, 13, 75. https://doi.org/10.3390/en13010075
Krause P, Nowoświat A. Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene. Energies. 2020; 13(1):75. https://doi.org/10.3390/en13010075
Chicago/Turabian StyleKrause, Paweł, and Artur Nowoświat. 2020. "Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene" Energies 13, no. 1: 75. https://doi.org/10.3390/en13010075
APA StyleKrause, P., & Nowoświat, A. (2020). Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene. Energies, 13(1), 75. https://doi.org/10.3390/en13010075