Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach
Abstract
1. Introduction
2. Research Methodology
3. Empirical Results
3.1. Data Collection
3.2. Energy Efficiency
3.3. Energy Efficiency Improvement
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DEA | Data envelopment analysis |
DMUs | Decision-making units |
SBM | Slack-based model |
CO2 GDP | Carbon dioxide Gross domestic product |
NOX | Dinitrogen monoxide |
SO2 | Sulfur dioxide |
APEC | Asia-Pacific Economic Cooperation |
TFEE | Total-factor energy efficiency |
PFEE | Particular-factor energy efficiency |
EFFCH | Efficiency change |
TECHCH | Technical change |
MPI | Total productivity change (Malmquist Productivity Index) |
References
- International Energy Agency, Energy Efficiency 2018: Analysis and outlook to 2040, OECD/IEA, 2018. Available online: https://webstore.iea.org/download/direct/2369?fileName=Market_Report_Series_Energy_Efficiency_2018.pdf (accessed on 18 August 2018).
- U.S. Energy Information Administration. Available online: https://www.eia.gov/todayinenergy/detail.php?id=26212 (accessed on 18 August 2018).
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. Efficiency, and allocation of emission allowances and energy consumption over more sustainable European economies. J. Clean. Prod. 2018, 182, 805–817. [Google Scholar] [CrossRef]
- Borozan, D. Technical and total factor energy efficiency of European regions: a two-stage approach. Energy 2018, 152, 521–532. [Google Scholar] [CrossRef]
- Mardani, A. Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends. Energies 2018, 11, 2002. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Yeh, T.L.; Chen, T.Y.; Lai, P.Y. A comparative study of energy utilization efficiency between Taiwan and China. Energy Policy 2010, 38, 2386–2394. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M.; Zhang, S. A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs. Energy Policy 2012, 46, 574–584. [Google Scholar] [CrossRef]
- Bian, Y.; He, P.; Xu, H. Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach. Energy Policy 2013, 63, 962–971. [Google Scholar] [CrossRef]
- Hong, L.; Fang, K.N.; Yang, W.; Wang, D.; Hong, X.X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar]
- Wang, K.; Yu, S.W.; Zhang, W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y.R. Environmental energy efficiency of China’s regional economies: A non-oriented slacks-based measure analysis. Soc. Sci. J. 2013, 50, 225–234. [Google Scholar] [CrossRef]
- Song, M.; Yang, L.; Wu, J. Energy saving in China: Analysis on the energy efficiency via bootstrap-DEA approach. Energy Policy 2013, 57, 1–6. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y.M. China’s regional industrial energy efficiency and carbon emissions abatement costs. Energy 2014, 130, 617–631. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy 2015, 78, 113–124. [Google Scholar] [CrossRef]
- Rui, Z.F.; Zhong, Q.D.; Jin, L.H. Clean energy use and total-factor efficiencies: An international comparison. Renew. Sustain. Energy Rev. 2015, 52, 1158–1171. [Google Scholar]
- Yaser, I.; He, W.Z.; Wang, Z.H. Energy and CO2 emissions efficiency of major economies: A nonparametric analysis. J. Clean. Prod. 2016, 139, 779–787. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Zhou, D.Q.; Meng, F.Y.; Bai, Y.; Cai, S.Q. Energy efficiency and congestion assessment with energy mix effect: The case of APEC countries. J. Clean. Prod. 2017, 142, 819–828. [Google Scholar] [CrossRef]
- Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. J. Clean. Prod. 2017, 142, 846–853. [Google Scholar] [CrossRef]
- Wang, C.N.; Ho, T.H.X.; Hsueh, M.H. An Integrated Approach for Estimating the Energy Efficiency of Seventeen Countries. Energies 2017, 10, 1597. [Google Scholar] [CrossRef]
- Yaser, I.; Wang, Z.H.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy 2018, 147, 197–207. [Google Scholar]
- Apergis, N.; Aye, G.C.; Barros, C.P.; Gupta, R.; Wanke, P. Energy efficiency of selected OECD countries: A slack based model with undesirable outputs. Energy Econ. 2015, 51, 45–53. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J. Measurement of low carbon economy efficiency with a three-stage data envelopment analysis: A comparison of the largest twenty CO2 emitting countries. Int. J. Environ. Res. Public Heal. 2016, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Lenz, N.; Segota, A.; Maradin, D. Total-factor energy efficiency in EU: Dto environmental impacts matter? Int. J. Energy Econ. Policy 2018, 8, 92–96. [Google Scholar]
- Tone, K.A. Dealing with undesirable outputs in DEA: a Slacks-Based Measure (SBM) approach. 2003. Available online: https://www.researchgate.net/publication/284047010_Dealing_with_undesirable_outputs_in_DEA_a_Slacks-Based_Measure_SBM_approach (accessed on 18 October 2018).
- Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Y. Productivity Growth, Technical Progress, and Efficiency Changes in Industrialised Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Enerdata Year Book. Available online: https://yearbook.enerdata.net (accessed on 5 August 2018).
- World Bank. Available online: https://data.worldbank.org (accessed on 5 August 2018).
- Khailly, K. Approaches to low carbon development in China and India. Adv. Clim. Chang. Res. 2016, 7, 213–221. [Google Scholar]
Year | Variables | Inputs | Outputs | |||
---|---|---|---|---|---|---|
Non-Energy | Energy | Desirable | Undesirable | |||
Gross Capital Formation (constant 2010 billion US$) | Labor Force (Million people) | Energy Consumption (Mtoe) | GDP (constant 2010 billion US$) | CO2 Emissions (Metric Ton) | ||
2010 | Max | 2904.64 | 779.96 | 2536.55 | 14,964.37 | 7711.61 |
Min | 37.56 | 8.72 | 69.11 | 148.05 | 183.72 | |
Average | 530.95 | 88.34 | 403.96 | 2139.32 | 1011.10 | |
SD | 723.90 | 168.04 | 605.82 | 3025.83 | 1710.78 | |
2011 | Max | 3190.24 | 782.57 | 2722.12 | 15,517.93 | 8432.95 |
Min | 39.59 | 8.81 | 76.42 | 192.63 | 190.07 | |
Average | 562.96 | 88.84 | 411.75 | 2373.25 | 1044.23 | |
SD | 770.48 | 168.69 | 630.45 | 3207.72 | 1813.83 | |
2012 | Max | 3432.35 | 784.48 | 2819.51 | 16,155.26 | 8612.91 |
Min | 44.26 | 8.89 | 73.85 | 208.00 | 196.44 | |
Average | 581.39 | 89.45 | 418.76 | 2429.41 | 1056.96 | |
SD | 827.61 | 169.22 | 641.83 | 3372.71 | 1828.20 | |
2013 | Max | 3760.89 | 785.75 | 2909.77 | 16,691.52 | 9026.22 |
Min | 40.53 | 8.96 | 77.42 | 236.63 | 196.22 | |
Average | 603.27 | 90.23 | 424.41 | 2484.41 | 1078.71 | |
SD | 888.22 | 170.21 | 657.64 | 3501.11 | 1902.53 | |
2014 | Max | 4043.34 | 786.57 | 2954.98 | 17,427.61 | 9069.56 |
Min | 41.22 | 9.05 | 76.66 | 221.42 | 199.32 | |
Average | 628.60 | 90.95 | 430.84 | 2551.50 | 1086.09 | |
SD | 944.62 | 171.15 | 669.30 | 3688.52 | 1918.46 | |
2015 | Max | 4297.51 | 787.07 | 2975.71 | 18,120.71 | 9095.10 |
Min | 44.77 | 9.11 | 78.09 | 184.39 | 204.81 | |
Average | 645.57 | 91.64 | 431.23 | 2432.61 | 1083.54 | |
SD | 999.91 | 172.01 | 669.47 | 3859.93 | 1909.47 | |
2016 | Max | 4570.85 | 787.05 | 3017.37 | 18,624.48 | 9085.94 |
Min | 49.80 | 9.17 | 76.88 | 137.28 | 212.79 | |
Average | 655.77 | 92.51 | 435.72 | 2473.97 | 1089.65 | |
SD | 1036.39 | 172.82 | 676.55 | 3968.39 | 1906.72 | |
2017 | Max | 4794.55 | 786.74 | 3104.87 | 19,390.60 | 9297.23 |
Min | 55.44 | 9.23 | 80.18 | 159.41 | 217.88 | |
Average | 681.37 | 93.07 | 445.31 | 2621.80 | 1114.00 | |
SD | 1072.22 | 173.47 | 691.27 | 4171.29 | 1942.27 |
DMU | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average |
---|---|---|---|---|---|---|---|---|---|
Australia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Canada | 0.721 | 0.689 | 0.680 | 0.643 | 0.627 | 0.622 | 0.652 | 0.635 | 0.659 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 0.881 | 0.881 | 0.840 | 1.000 | 0.928 | 0.741 | 0.837 | 0.885 | 0.874 |
Italy | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.937 | 1.000 | 1.000 | 0.992 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 0.748 | 0.644 | 1.000 | 1.000 | 0.924 |
South Korea | 0.471 | 0.456 | 0.453 | 0.463 | 0.467 | 0.483 | 0.501 | 0.495 | 0.474 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United States | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Developed Countries | 0.907 | 0.903 | 0.897 | 0.911 | 0.877 | 0.843 | 0.899 | 0.901 | 0.892 |
Brazil | 0.651 | 0.657 | 0.599 | 0.526 | 0.479 | 0.461 | 1.000 | 1.000 | 0.672 |
China | 0.178 | 0.199 | 0.221 | 0.247 | 0.255 | 0.259 | 0.248 | 0.256 | 0.233 |
Egypt | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
India | 0.163 | 0.158 | 0.156 | 0.157 | 0.155 | 0.171 | 0.187 | 0.200 | 0.168 |
Indonesia | 0.381 | 0.399 | 0.386 | 0.375 | 0.350 | 0.369 | 0.394 | 0.394 | 0.381 |
Iran | 0.369 | 0.395 | 0.415 | 0.362 | 0.334 | 0.363 | 0.388 | 0.369 | 0.374 |
Kazakhstan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Malaysia | 1.000 | 1.000 | 1.000 | 1.000 | 0.915 | 0.895 | 0.838 | 0.818 | 0.933 |
Mexico | 0.523 | 0.500 | 0.497 | 0.504 | 0.505 | 0.497 | 0.481 | 0.510 | 0.502 |
Poland | 0.730 | 0.722 | 0.725 | 0.767 | 0.758 | 0.748 | 0.774 | 0.774 | 0.750 |
Russia | 0.295 | 0.306 | 0.327 | 0.348 | 0.318 | 0.277 | 0.274 | 0.300 | 0.306 |
Saudi Arabia | 0.998 | 0.675 | 0.643 | 0.641 | 0.600 | 0.553 | 0.600 | 0.608 | 0.665 |
South Africa | 0.596 | 0.591 | 0.567 | 0.530 | 0.514 | 0.525 | 0.566 | 0.691 | 0.573 |
Thailand | 0.578 | 0.579 | 0.557 | 0.554 | 0.578 | 0.610 | 0.667 | 0.759 | 0.610 |
Turkey | 0.757 | 0.671 | 0.683 | 0.682 | 0.606 | 0.583 | 0.571 | 0.497 | 0.631 |
Developing | 0.615 | 0.590 | 0.585 | 0.579 | 0.558 | 0.554 | 0.599 | 0.612 | 0.587 |
Average | 0.732 | 0.715 | 0.710 | 0.712 | 0.686 | 0.669 | 0.719 | 0.728 | 0.709 |
DMU | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Average |
---|---|---|---|---|---|---|---|---|---|
Australia | 0.899 | 0.951 | 1.000 | 1.000 | 0.944 | 0.955 | 0.925 | 0.951 | 0.953 |
Canada | 0.527 | 0.524 | 0.536 | 0.519 | 0.471 | 0.473 | 0.475 | 0.473 | 0.500 |
France | 0.846 | 0.824 | 0.775 | 0.785 | 0.713 | 0.661 | 0.704 | 0.715 | 0.753 |
Germany | 0.893 | 0.848 | 0.791 | 0.924 | 0.929 | 0.753 | 0.818 | 0.903 | 0.857 |
Italy | 1.000 | 1.000 | 0.982 | 1.000 | 0.990 | 0.910 | 0.951 | 0.962 | 0.974 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.885 | 1.000 | 1.000 | 0.986 |
South Korea | 0.440 | 0.429 | 0.422 | 0.425 | 0.420 | 0.428 | 0.438 | 0.443 | 0.431 |
Spain | 1.000 | 1.000 | 0.943 | 1.000 | 1.000 | 0.954 | 1.000 | 1.000 | 0.987 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United States | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Developed Countries | 0.861 | 0.858 | 0.845 | 0.865 | 0.847 | 0.802 | 0.831 | 0.845 | 0.844 |
Brazil | 0.681 | 0.697 | 0.645 | 0.596 | 0.518 | 0.461 | 0.494 | 0.524 | 0.577 |
China | 0.226 | 0.266 | 0.304 | 0.386 | 0.419 | 0.424 | 0.408 | 0.428 | 0.358 |
Egypt | 0.988 | 1.000 | 0.974 | 1.000 | 0.987 | 1.000 | 1.000 | 0.961 | 0.989 |
India | 0.206 | 0.199 | 0.190 | 0.182 | 0.171 | 0.176 | 0.182 | 0.187 | 0.187 |
Indonesia | 0.459 | 0.500 | 0.483 | 0.466 | 0.439 | 0.444 | 0.464 | 0.464 | 0.465 |
Iran | 0.414 | 0.426 | 0.412 | 0.380 | 0.353 | 0.344 | 0.361 | 0.358 | 0.381 |
Kazakhstan | 1.000 | 0.988 | 1.000 | 0.950 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 |
Malaysia | 0.996 | 1.000 | 0.994 | 0.890 | 0.892 | 0.916 | 0.892 | 0.916 | 0.937 |
Mexico | 0.634 | 0.617 | 0.590 | 0.594 | 0.599 | 0.601 | 0.589 | 0.625 | 0.606 |
Poland | 0.837 | 0.855 | 0.872 | 0.879 | 0.924 | 0.892 | 0.892 | 0.900 | 0.881 |
Russia | 0.195 | 0.216 | 0.226 | 0.230 | 0.196 | 0.170 | 0.171 | 0.179 | 0.198 |
Saudi Arabia | 0.467 | 0.523 | 0.475 | 0.494 | 0.442 | 0.416 | 0.432 | 0.443 | 0.461 |
South Africa | 0.562 | 0.576 | 0.586 | 0.578 | 0.556 | 0.558 | 0.572 | 0.622 | 0.576 |
Thailand | 0.662 | 0.680 | 0.645 | 0.606 | 0.614 | 0.607 | 0.632 | 0.658 | 0.638 |
Turkey | 0.916 | 0.873 | 0.849 | 0.873 | 0.824 | 0.777 | 0.766 | 0.695 | 0.822 |
Developing | 0.616 | 0.628 | 0.616 | 0.607 | 0.596 | 0.586 | 0.590 | 0.597 | 0.604 |
Average | 0.714 | 0.720 | 0.708 | 0.710 | 0.696 | 0.672 | 0.687 | 0.696 | 0.700 |
DMU | TFEE | PFEE | ||||
---|---|---|---|---|---|---|
EFFCH | TECHCH | MPI | EFFCH | TECHCH | MPI | |
Australia | 1.031 | 0.993 | 1.024 | 1.058 | 0.997 | 1.054 |
Canada | 0.981 | 1.01 | 0.991 | 0.898 | 1.045 | 0.938 |
France | 0.909 | 1.02 | 0.927 | 0.846 | 1.241 | 1.049 |
Germany | 1.009 | 1 | 1.009 | 1.011 | 1.084 | 1.096 |
Italy | 0.987 | 1.012 | 0.999 | 0.930 | 1.126 | 1.047 |
Japan | 0.911 | 1.052 | 0.958 | 0.743 | 1.118 | 0.830 |
South Korea | 0.985 | 1.018 | 1.002 | 1.006 | 1.006 | 1.012 |
Spain | 0.984 | 1.008 | 0.993 | 0.955 | 1.029 | 0.983 |
United Kingdom | 0.98 | 1.006 | 0.986 | 1.247 | 1.101 | 1.372 |
United States | 1 | 0.902 | 0.902 | 1.000 | 1.155 | 1.155 |
Developed Countries | 0.978 | 1.002 | 0.979 | 0.969 | 1.090 | 1.054 |
Brazil | 1.785 | 0.751 | 1.34 | 0.770 | 1.127 | 0.868 |
China | 1 | 0.944 | 0.944 | 1.894 | 1.129 | 2.138 |
Egypt | 1.039 | 0.76 | 0.79 | 0.972 | 0.880 | 0.856 |
India | 1.211 | 0.962 | 1.165 | 0.907 | 1.142 | 1.035 |
Indonesia | 1.078 | 0.936 | 1.009 | 1.010 | 0.965 | 0.974 |
Iran | 1.078 | 1.047 | 1.128 | 0.863 | 0.916 | 0.791 |
Kazakhstan | 1.036 | 0.826 | 0.855 | 1.016 | 0.858 | 0.872 |
Malaysia | 0.847 | 0.887 | 0.751 | 0.919 | 0.889 | 0.818 |
Mexico | 0.972 | 0.95 | 0.923 | 0.986 | 0.986 | 0.972 |
Poland | 0.989 | 0.901 | 0.891 | 1.074 | 0.921 | 0.990 |
Russia | 1.09 | 0.951 | 1.037 | 0.916 | 1.031 | 0.944 |
Saudi Arabia | 1.098 | 1.001 | 1.099 | 0.949 | 0.934 | 0.887 |
South Africa | 1.064 | 0.939 | 1 | 1.107 | 0.902 | 0.998 |
Thailand | 1.455 | 0.774 | 1.126 | 0.995 | 0.907 | 0.902 |
Turkey | 0.873 | 0.959 | 0.838 | 0.758 | 0.958 | 0.727 |
Developing | 1.108 | 0.906 | 0.993 | 1.009 | 0.970 | 0.985 |
Average | 1.056 | 0.944 | 0.987 | 0.993 | 1.018 | 1.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-W.; Le, K.-D.; Nguyen, T.-D. Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach. Energies 2019, 12, 1535. https://doi.org/10.3390/en12081535
Wang L-W, Le K-D, Nguyen T-D. Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach. Energies. 2019; 12(8):1535. https://doi.org/10.3390/en12081535
Chicago/Turabian StyleWang, Lai-Wang, Ke-Duc Le, and Thi-Duong Nguyen. 2019. "Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach" Energies 12, no. 8: 1535. https://doi.org/10.3390/en12081535
APA StyleWang, L.-W., Le, K.-D., & Nguyen, T.-D. (2019). Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach. Energies, 12(8), 1535. https://doi.org/10.3390/en12081535