An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media
Abstract
:1. Introduction
2. Energy Transfer Media
3. Buck Converter with Energy Transfer Media
4. Buck-Boost Converter with Energy Transfer Media
5. Extension to Other Topologies
5.1. Multi-Phase Buck Converter with ETM
5.2. Single-Inductor Multiple-Output Buck Converter with ETM
6. Simulation Results and Discussion
6.1. Buck Converter with ETM
6.2. Buck-Boost Converter with ETM
6.3. Multi-Phase Buck Converter with ETM
6.4. Single-Inductor Multiple-Output Buck Converter with ETM
7. Conclusions
Funding
Conflicts of Interest
References
- Carroll, A.; Heiser, G. An analysis of power consumption in a smartphone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Boston, MA, USA, 23–25 June 2010. [Google Scholar]
- Lee, I.; Lee, Y.; Sylvester, D.; Blaauw, D. Battery Voltage Supervisors for Miniature IoT Systems. IEEE J. Solid-State Circuits 2016, 51, 2743–2756. [Google Scholar] [CrossRef]
- Hella, M.M.; Mercier, P.P. Power Management Integrated Circuits, 1st ed.; CRC Press Publishers: Boca Raton, FL, USA, 2016. [Google Scholar]
- Erickson, R.W.; Maksimovi’c, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer Academic Publishers: Norwell, MA, USA, 2001. [Google Scholar]
- Park, J.; Ko, W.-J.; Kang, D.-S.; Lee, Y.; Chun, J.-H. An Output Capacitor-Less Low-Dropout Regulator with 0–100 mA Wide Load Current Range. Energies 2019, 12, 211. [Google Scholar] [CrossRef]
- Hazucha, P.; Karnik, T.; Bloechel, B.A.; Parsons, C.; Finan, D.; Borkar, S. Area-Efficient Linear Regulator with Ultra-Fast Load Regulation. IEEE J. Solid-State Circuits 2005, 40, 933–940. [Google Scholar] [CrossRef]
- Milliken, R.J.; Silva-Martinez, J.; Sanchez-Sinencio, E. Full On-Chip CMOS Low-Dropout Voltage Regulator. IEEE Trans. Circuits Syst. I 2007, 54, 1879–1890. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Leung, K.N. A 6-_WChip-Area-Efficient Output-Capacitorless LDO in 90-nm CMOS Technology. IEEE J. Solid-State Circuits 2010, 45, 1896–1905. [Google Scholar] [CrossRef]
- Seeman, M.D.; Sanders, S.R. Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron. 2008, 23, 841–851. [Google Scholar] [CrossRef]
- Le, H.P.; Sanders, S.R.; Alon, E. Design Technique for fully integrated Switched-Capacitor DC-DC Converters. IEEE J. Solid-State Circuits 2011, 46, 2120–2131. [Google Scholar] [CrossRef]
- Bang, S.; Blaauw, D.; Sylvester, D. A Successive-Approximation Switched-Capacitor DC–DC Converter with Resolution of VIN/2N for a Wide Range of Input and Output Voltages. IEEE J. Solid-State Circuits 2016, 51, 543–556. [Google Scholar]
- Saif, H.; Lee, Y.; Lee, H.; Kim, M.; Khan, M.B.; Chun, J.-H.; Lee, Y. A Wide Load Current and Voltage Range Switched Capacitor DC–DC Converter with Load Dependent Configurability for Dynamic Voltage Implementation in Miniature Sensors. Energies 2018, 11, 3092. [Google Scholar] [CrossRef]
- Chiang, C.; Chen, C. Zero-Voltage-Switching Control for a PWM Buck Converter Under DCM/CCM Boundary. IEEE Trans. Power Electron. 2009, 24, 2120–2212. [Google Scholar] [CrossRef]
- Suh, J.; Seok, J.; Kong, B. A Fast Response PWM Buck Converter with Active Ramp Tracking Control in Load Transient period. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 467–471. [Google Scholar] [CrossRef]
- Calderón, A.; Vinagre, B.; Feliu, V. Fractional order control strategies for power electronic buck converters. Signal Process. 2006, 86, 2803–2819. [Google Scholar] [CrossRef]
- Suh, J.-D.; Yun, Y.-H.; Kong, B.-S. High-Efficiency DC–DC Converter with Charge-Recycling Gate-Voltage Swing Control. Energies 2019, 12, 899. [Google Scholar] [CrossRef]
- Abdulslam, A.; Mohammad, B.; Ismail, M.; Mercier, P.; Ismail, Y. A 93% Peak Efficiency Fully-Integrated Multilevel Multistate Hybrid DC–DC Converter. IEEE Trans. Circuits Syst. I 2018, 65, 2617–2630. [Google Scholar] [CrossRef]
- Kim, W.; Brooks, D.; Wei, G.-Y. A fully-integrated 3-level DC-DC converter for nanosecond-scale DVSF. IEEE J. Solid-State Circuits 2012, 47, 206–219. [Google Scholar] [CrossRef]
- Li, P.; Xue, L.; Hazucha, P.; Karnik, T.; Bashirullah, R. A delay-locked loop synchronization scheme for high-frequency multiphase hysteretic DC-DC converters. IEEE J. Solid-State Circuits 2009, 44, 3131–3145. [Google Scholar] [CrossRef]
- Abedinpour, S.; Bakkaloglu, B.; Kiaei, S. A Multistage Interleaved Synchronous Buck Converter with Integrated Output Filter in 0.18µm SiGe Process. IEEE Trans. Power Electron. 2007, 22, 2164–2175. [Google Scholar] [CrossRef]
- Huang, C.; Mok, P.K.T. A 100 MHz 82.4% Efficiency Package-Bondwire Based Four-Phase Fully-Integrated Buck Converter with Flying Capacitor for Area Reduction. IEEE J. Solid-State Circuits 2013, 48, 2977–2988. [Google Scholar] [CrossRef]
- Rodiˇc, M.; Milanoviˇc, M.; Truntiˇc, M.; Ošlaj, B. Switched-Capacitor Boost Converter for Low Power Energy Harvesting Applications. Energies 2018, 11, 3156. [Google Scholar] [CrossRef]
- Tran, V.-T.; Nguyen, M.-K.; Choi, Y.-O.; Cho, G.-B. Switched-Capacitor-Based High Boost DC-DC Converter. Energies 2018, 11, 987. [Google Scholar] [CrossRef]
- Ju, Y.; Shin, S.; Huh, Y.; Park, S.; Bang, J.; Kim, K.; Choi, S.; Lee, J.; Cho, G. A hybrid inductor-based flying-capacitor-assisted step-up/step-down DC-DC converter with 96.56% efficiency. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 184–185. [Google Scholar]
- Liu, W.; Assem, P.; Lei, Y.; Hanumolu, P.K.; Pilawa-Podgurski, R. A 94.2%-peak-efficiency 1.53A direct-battery-hook-up hybrid Dickson switched-capacitor DC-DC converter with wide continuous conversion ratio in 65nm CMOS. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 182–183. [Google Scholar]
- Ko, M.; Kim, K.; Woo, Y.; Shin, S.; Han, H.; Huh, Y.; Kang, G.; Cho, J.; Lim, S.; Park, S.; et al. A 97% high-efficiency 6μs fast-recovery-time buck-based step-up/down converter with embedded 1/2 and 3/2 charge-pumps for li-lon battery management. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 428–430. [Google Scholar]
- Shin, S.; Huh, Y.; Ju, Y.; Choi, S.; Shin, C.; Woo, Y.; Choi, M.; Park, S.; Sohn, Y.; Ko, M.; et al. A 95.2% efficiency dual-path DC-DC step-up converter with continuous output current delivery and low voltage ripple. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 430–432. [Google Scholar]
- Huh, Y.; Shin, S.; Hong, S.; Woo, Y.; Ju, Y.; Choi, S.; Cho, G. A Hybrid Dual-Path Step-Down Converter with 96.2% Peak Efficiency Using a 250mΩ Large-DCR Inductor. In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018; pp. 225–226. [Google Scholar]
- Wang, S.; Woo, Y.; Yuk, Y.; Lee, B.; Cho, G.; Cho, G. Efficiency enhanced Single-Inductor Boost-Inverting Flyback converter with Dual Hybrid Energy transfer media and a Bifurcation Free Comparator. In Proceedings of the 2010 Proceedings of ESSCIRC, Seville, Spain, 14–16 September 2010; pp. 450–453. [Google Scholar]
- Wang, S.; Woo, Y.; Yuk, Y.; Cho, G.; Cho, G. High efficiency Single-Inductor Boost/Buck Inverting Flyback converter with hybrid energy transfer media and multi level gate driving for AMOLED panel. In Proceedings of the 2010 Symposium on VLSI Circuits, Honolulu, HI, USA, 16–18 June 2010; pp. 59–60. [Google Scholar]
- Dongsheng, M.; Wing-Hung, K.; Chi-Ying, T. A pseudo-CCM/DCM SIMO switching converter with freewheel switching. IEEE J. Solid-State Circuits 2003, 38, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Qian, Y.; Hong, Z. 4.3 An 87%-peak-efficiency DVS-capable single-inductor 4-output DC-DC buck converter with ripple-based adaptive off-time control. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 82–83. [Google Scholar]
- Goh, T.Y.; Ng, W.T. Single Discharge Control for Single-Inductor Multiple-Output DC–DC Buck Converters. IEEE Trans. Power Electron. 2018, 33, 2307–2316. [Google Scholar] [CrossRef]
VIN | VOUT | ILOAD | fIN | L | RDCR |
5 V | 2.8 V | 1 A | 1 MHz | 4.7 μH | 0.2 Ω |
CF | CO | RON | RESR | Cgate | Coss |
4.7 μF | 4.7 μF | 50 mΩ | 20 mΩ | 250 pF | 100 pF |
VIN | VOUT | ILOAD | fIN | L | RDCR |
5 V | 6 V | 1 A | 1 MHz | 4.7 μH | 0.2 Ω |
CF | CO | RON | RESR | Cgate | Coss |
4.7 μF | 4.7 μF | 50 mΩ | 20 mΩ | 250 pF | 100 pF |
VIN | VOUT | ILOAD | fIN | L | RDCR |
5 V | 3.7 V | 1 A | 1 MHz | 4.7 μH | 0.2 Ω |
CF | CO | RON | RESR | Cgate | Coss |
4.7 μF | 4.7 μF | 50 mΩ | 20 mΩ | 250 pF | 100 pF |
VIN | VOUT1/VOUT2 | ILOAD1/ILOAD2 | fIN | L | RDCR |
5 V | 2.8 V/2 V | 0.7 A/0.5 A | 1 MHz | 4.7 μH | 0.2 Ω |
CF | CO | RON | RESR | Cgate | Coss |
4.7 μF | 4.7 μF | 50 mΩ | 20 mΩ | 250 pF | 100 pF |
Advantages | BKETM | CBK | BBETM | CBB |
---|---|---|---|---|
Reduction of IL | O | × | O | × |
Reduction of ∆VO | × | × | O | × |
Continuous iD | O | O | O | × |
Advantages | MBKETM | CMBK | SIDOETM | CSIMO |
---|---|---|---|---|
Reduction of IL | O | × | O | × |
Reduction of VO | O | × | O | × |
Continuous iD | O | O | O | × |
Separated frequency | O | × | × | × |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-U. An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media. Energies 2019, 12, 1468. https://doi.org/10.3390/en12081468
Shin S-U. An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media. Energies. 2019; 12(8):1468. https://doi.org/10.3390/en12081468
Chicago/Turabian StyleShin, Se-Un. 2019. "An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media" Energies 12, no. 8: 1468. https://doi.org/10.3390/en12081468
APA StyleShin, S.-U. (2019). An Analysis of Non-Isolated DC-DC Converter Topologies with Energy Transfer Media. Energies, 12(8), 1468. https://doi.org/10.3390/en12081468