Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Zeng, Q.J.; Lafalce, E.; Yu, S.T.; Smith, M.J.; Yoon, Y.J.; Chang, Y.J.; Jiang, Y.; Lin, Z.Q.; Vardeny, Z.V.; et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 2018, 6, 1800474. [Google Scholar] [CrossRef]
- Chen, L.C.; Tseng, Z.L.; Lin, D.W.; Lin, Y.S.; Chen, S.H. Improved performance of perovskite light-emitting diodes by quantum confinement effect in perovskite nanocrystals. Nanomaterials 2018, 8, 459. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Lin, Y.S.; Tang, P.W.; Tai, C.Y.; Tseng, Z.L.; Lin, J.H.; Chen, S.H.; Kuo, H.C. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells. Nanoscale 2017, 9, 17802–17806. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Tseng, Z.L.; Chen, S.Y.; Yang, S. An ultrasonic synthesis method for high-luminance perovskite quantum dots. Ceram. Int. 2017, 43, 16032–16035. [Google Scholar] [CrossRef]
- Park, N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429. [Google Scholar] [CrossRef]
- Wolf, S.D.; Holovsky, J.; Moon, S.J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F.J.; Yum, J.H.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Sheng, R.; Wen, X.; Huang, S.; Hao, X.; Chen, S.; Jiang, Y.; Deng, X.; Green, M.A.; Ho-Bailliea, A.W.Y. Photoluminescence characterisations of a dynamic aging process of organic–inorganic CH3NH3PbBr3 perovskite. Nanoscale 2016, 8, 1926–1931. [Google Scholar] [CrossRef]
- Buin, A.; Comin, R.; Xu, J.X.; Ip, A.H.; Sargent, E.H. Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 2015, 27, 4405–4412. [Google Scholar] [CrossRef]
- Dimesso, L.; Dimamay, M.; Hamburger, M.; Jaegermann, W. Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 2014, 26, 6762–6770. [Google Scholar] [CrossRef]
- Jang, D.M.; Park, K.; Kim, D.H.; Park, J.; Shojaei, F.; Kang, H.S.; Ahn, J.P.; Lee, J.W.; Song, J.K. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Lett. 2015, 15, 5191–5199. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Quintero, O.A.; Sanchez, R.S.; Rincon, M.; Mora-Sero, I. Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer. J. Phys. Chem. Lett. 2015, 6, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.J. Ferroelectric polarization driven optical absorption and charge carrier transport in CH3NH3PbI3/TiO2-based photovoltaic cells. J. Power Sources 2015, 291, 58–65. [Google Scholar] [CrossRef]
- Kim, Y.H.; Cho, H.; Heo, J.H.; Kim, T.S.; Myoung, N.; Lee, C.L.; Im, S.H.; Lee, T.W. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 2015, 27, 1248–1254. [Google Scholar] [CrossRef]
- Gatti, T.; Menna, E.; Meneghetti, M.; Maggini, M.; Petrozza, A.; Lamberti, F. The Renaissance of fullerenes with perovskite solar cells. Nano Energy 2017, 41, 84–100. [Google Scholar] [CrossRef]
- Castro, E.; Murillo, J.; Fernandez-Delgado, O.; Echegoyen, L. Progress in fullerene-based hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2635–2651. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiencies, National Renewable Energy Laboratory. Available online: https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf (accessed on 3 January 2019).
- Mei, A.; Li, X.; Liu, L.F.; Ku, Z.L.; Liu, T.F.; Rong, Y.G.; Xu, M.; Hu, M.; Chen, J.Z.; Yang, Y.; et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Zhuo, S.; Zhang, J.; Shi, Y.; Huang, Y.; Zhang, B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem. Int. Ed. 2015, 54, 5693–5696. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Wang, L.; Niu, G.; Gao, R.; Qiu, Y. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J. Mater. Chem. A 2013, 1, 11735–11740. [Google Scholar] [CrossRef]
- Law, C.; Miseikis, L.; Dimitrov, S.; Shakya-Tuladhar, P.; Li, X.; Barnes, P.R.; Durrant, J.; O’Regan, B.C. Performance and stability of lead perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. Adv. Mater. 2014, 26, 6268–6273. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bi, C.; Yuan, J.; Zhang, L.; Tian, J. Original core–shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 2018, 3, 245–251. [Google Scholar] [CrossRef]
- Chung, I.; Lee, B.; He, J.; Chang, R.P.; Kanatzidis, M.G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489. [Google Scholar] [CrossRef]
- Tan, Z.K.; Moghaddam, R.S.; Lai, M.L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L.M.; Credgington, D.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687–692. [Google Scholar] [CrossRef]
- Liu, S.; Chen, G.; Huang, Y.; Lin, S.; Zhang, Y.; He, M.; Xiang, W.; Liang, X. Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. J. Alloys Compd. 2017, 724, 889–896. [Google Scholar] [CrossRef]
- Zhang, D.; Eaton, S.; Yu, Y.; Dou, L.; Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233. [Google Scholar] [CrossRef]
- Wei, S.; Yang, Y.; Kang, X.; Wang, L.; Huang, L.; Pan, D. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chem. Commun. 2016, 52, 7265–7268. [Google Scholar] [CrossRef]
- Eaton, S.W.; Lai, M.; Gibson, N.A.; Wong, A.B.; Dou, L.; Ma, J.; Wang, L.W.; Leone, S.R.; Yang, P. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998. [Google Scholar] [CrossRef]
- Schmidt, L.C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Espallargas, G.M.; Bolink, H.J.; Galian, R.E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. [Google Scholar] [CrossRef]
- Gonzalez-Carrero, S.; Galian, R.E.; Perez-Prieto, J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles. J. Mater. Chem. A 2015, 3, 9187–9193. [Google Scholar] [CrossRef]
PbO/Recycled PbO2 Ratio | Cs2CO3 | PbO | Recycled PbO2 |
---|---|---|---|
100% | 81.45 mg | 0 mg | 113.60 mg |
80% | 81.45 m g | 22.32 mg | 89.28 mg |
50% | 81.45 mg | 55.80 mg | 55.80 mg |
20% | 81.45 mg | 89.28 mg | 22.32 mg |
0% | 81.45 mg | 113.60 mg | 0 mg |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-C.; Tien, C.-H.; Ou, S.-L.; Lee, K.-Y.; Tian, J.; Tseng, Z.-L.; Chen, H.-T.; Kuo, H.-C.; Sun, A.-C. Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste. Energies 2019, 12, 1117. https://doi.org/10.3390/en12061117
Chen L-C, Tien C-H, Ou S-L, Lee K-Y, Tian J, Tseng Z-L, Chen H-T, Kuo H-C, Sun A-C. Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste. Energies. 2019; 12(6):1117. https://doi.org/10.3390/en12061117
Chicago/Turabian StyleChen, Lung-Chien, Ching-Ho Tien, Sin-Liang Ou, Kun-Yi Lee, Jianjun Tian, Zong-Liang Tseng, Hao-Tian Chen, Hao-Chung Kuo, and An-Cheng Sun. 2019. "Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste" Energies 12, no. 6: 1117. https://doi.org/10.3390/en12061117
APA StyleChen, L.-C., Tien, C.-H., Ou, S.-L., Lee, K.-Y., Tian, J., Tseng, Z.-L., Chen, H.-T., Kuo, H.-C., & Sun, A.-C. (2019). Perovskite CsPbBr3 Quantum Dots Prepared Using Discarded Lead–Acid Battery Recycled Waste. Energies, 12(6), 1117. https://doi.org/10.3390/en12061117