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Abstract: Perovskite CsPbBr3 quantum dot (CsPbBr3-QD) recovery was performed using lead
scrap from lead storage batteries. The perovskite CsPbBr3-QD characteristics were analyzed using
different PbO/recycled PbO2 ratios. Scanning electron microscopy (SEM) was used to observe
the film surface morphology and cross-section. High-resolution transmission electron microscopy
(HRTEM) and X-ray diffraction (XRD) were used to observe the perovskite CsPbBr3-QDs’ structural
characteristics. A photoluminescence (PL) measurement system was used to analyze the optical
properties. The results show that lead scrap from lead–acid batteries as a material for perovskite
CsPbBr3-QD production can be successfully synthesized. This saves material and also proves that
recycling is valuable. The proposed approach is helpful for future material shortages and materials
not easily accessible. Although the efficiency is not very high, this process will be purified using
recycled lead in the future to achieve higher quantum yield.

Keywords: quantum dots; CsPbBr3; perovskite; recycled waste lead

1. Introduction

Organometallic halide perovskite material has special optical and electrical properties due to its
unique properties [1–4]. The diffusion speed of the carrier current is fast, and the diffusion distance
is long. The high absorption coefficient has very good absorption in the entire visible light region,
and the perovskite material characteristics allow it to fully absorb sunlight during operation and
reduce energy loss in the photoelectric conversion process [5–8]. Perovskite material has a low
exciton binding energy, therefore can be excited by light. Organic/inorganic hybrid perovskites,
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such as MAPbX3 (MA = CH3NH3; X = Cl, Br, I), have attracted widespread attention due to their
outstanding performance in solar cells, light-emitting diodes, and optoelectronic devices [9–17]. It is
worth noting that MAPbI3 has been widely used in the field of solar cells. The power conversion
efficiency (PCE) of a perovskite solar cell is up to 23.7% in 2019 [18]. Furthermore, due to band gap
tunability (400–800 nm) and narrow emission band of approximately 20 nm, the organic/inorganic
hybrid perovskites are considered emission components for phosphor-converted white light-emitting
diode (PC-WLED) and electroluminescent (EL) devices in wide-gamut color displays [15,19–21].
Compared to organic/inorganic hybrid perovskites, fully inorganic perovskite quantum dots such as
CsPbX3 (X = Cl, Br, I) exhibit higher stability and provide excellent thermoelectric performance [22–24].
The QD atom arrangement is quite tight and can be used to emit light with different wavelengths
using QDs with different sizes due to the quantum confinement effect. QDs are superior to traditional
organic dye molecules, because of their brightness, good light stability, and reproducible properties.
Therefore, QDs are highly valued in the material chemistry and bio-semiconductor fields [25,26]. This
study considers the price of commercial perovskite QDs and the environmental protection problem
in preparing perovskite CsPbBr3-QDs at room temperature using waste lead (PbO2) from lead–acid
batteries and pure PbO as the Pb-source material. The material and optoelectronic properties of
perovskite CsPbBr3-QDs with different ratios of PbO/recycled PbO2 are analyzed and discussed.

2. Materials and Methods

We used scrap lead batteries in this work (standard batteries, 12V). The battery top cover was
removed. The acidic electrolyte was poured out and carefully collected. The inner battery wall was
rinsed with water several times. Concentrated sulfuric acid (~2.2 M) is contained in the electrolyte
and care must be taken to wear protective gloves, safety glasses, and a lab coat during this process.
After dismantling the battery, lead source materials (i.e., Pb and PbO2) were washed several times
with dilute HCl (35%, Echo Chemical Co., Ltd., Miaoli, Taiwan) and DI water. The resulting anode and
cathode were naturally dried under atmospheric conditions. The collected materials were ground into
a powder using a mortar and pestle as the recycled PbO2 and ready for the next synthesis.

Recycled PbO2 prepared from a part of the recycled lead–acid battery was mixed with pure PbO
(90%, Echo Chemical Co., Ltd., Miaoli, Taiwan). The perovskite QD solution was prepared according
to different proportions (in this step we used 100%, 80%, 50%, 20%, and 0% for comparison), and
0.25 mmol Cs2CO3 (99.999%, Echo Chemical Co., Ltd., Miaoli, Taiwan) and 2.5 mL of oleic acid (99%,
Echo Chemical Co., Ltd., Miaoli, Taiwan) were added together into a 20 mL glass vial. The mixture
was magnetically stirred on a hot plate at 160 ◦C for 60 min to obtain a clear solution. The glass vial
was placed in an oven heated to 120 ◦C to remove moisture for 30 min, then 2.5 mL of toluene was
added to dilute the Cs and Pb precursor solutions to 0.1 M. Next, 1.0 mL of the Cs and Pb precursor
solution was decanted into 15 mL of toluene (99%, Echo Chemical Co., Ltd., Miaoli, Taiwan) for 15 min
with vigorous stirring while adding 0.05 mmol of Br precursor solution, which was synthesized by
tetrabutylammonium bromide (TOAB) (90%, Echo Chemical Co., Ltd., Miaoli, Taiwan), 0.25 mL of oleic
acid, and 1.0 mL of toluene. An 8 mL portion of toluene was added to the glass bottle immediately;
at this point, a limpid and green CsPbBr3-QD solution was formed. Figure 1 shows the technical
procedure for CsPbBr3-QD preparation using recovered waste lead from discarded lead–acid batteries.
The deployment ratio is summarized in Table 1.
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Figure 1. Technical procedure for CsPbBr3-QD preparation using recovered waste lead from 
discarded lead–acid batteries. (a) Discarded lead–acid battery, (b) Electrode inside battery, (c) 
Recycled electrodes (PbO2 anode and Pb cathode), (d) Grinding PbO2, (e) Collected PbO2 powder, 
and (f) CsPbBr3-QDs with different ratios under UV-365 nm laser excitation (left to right: 
PbO/recycled PbO2 ratio = 100%, 80%, 5%, 20%, and 0%). 
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50% 81.45 mg 55.80 mg 55.80 mg 
20% 81.45 mg 89.28 mg 22.32 mg 
0% 81.45 mg 113.60 mg 0 mg 
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onto glass substrates with different PbO/recycled PbO2 ratios. According to a study reports of 
references 27–29, the primary difference between the cubic and orthorhombic crystal structure of 
CsPbBr3 is a diffraction peak of ~30°. It was illustrated that the two dominant diffraction peaks of 
the synthesized pure CsPbBr3-QD (PbO(100%):PbO2(0%)) films, namely, (110) at 2θ=15.193° and 
(220) at 2θ=30.739°, demonstrated the cubic perovskite crystal structure. In this work, the structure 
was similar to those reported in Reference 24. In addition, the few waste lead CsPbBr3-QD 
(PbO(80%):PbO2(20%), PbO(50%):PbO2(50%), and PbO(20%):PbO2(80%)) films showed weak peaks 
so that the quantum dots had poor crystallinity and grain aggregation. On the other hand, the waste 
lead CsPbBr3-QD (PbO(0%):PbO2(100%)) films displayed the three dominant peaks, which were 
(100) at 2θ=15.179°, (110) at 2θ=21.443°, and (200) at 2θ=30.674°, respectively. It was observed that 
the (100) diffraction peak intensity was very strong, indicating that CsPbBr3-QDs are high 
crystallinity along the (100) orientation. The secondary diffraction peak of the (200) plane suggested 
crystalline perfection. Meantime, the clear splitting of the (100) and (200) diffraction peaks further 
indicated that the synthesized waste lead CsPbBr3-QD films may be of the room-temperature 
orthorhombic phase [30]. 

 

Figure 1. Technical procedure for CsPbBr3-QD preparation using recovered waste lead from discarded
lead–acid batteries. (a) Discarded lead–acid battery, (b) Electrode inside battery, (c) Recycled electrodes
(PbO2 anode and Pb cathode), (d) Grinding PbO2, (e) Collected PbO2 powder, and (f) CsPbBr3-QDs
with different ratios under UV-365 nm laser excitation (left to right: PbO/recycled PbO2 ratio = 100%,
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Table 1. The CsPbBr3-QD deployment ratio in this work.

PbO/Recycled PbO2 Ratio Cs2CO3 PbO Recycled PbO2

100% 81.45 mg 0 mg 113.60 mg
80% 81.45 m g 22.32 mg 89.28 mg
50% 81.45 mg 55.80 mg 55.80 mg
20% 81.45 mg 89.28 mg 22.32 mg
0% 81.45 mg 113.60 mg 0 mg

3. Results and Discussion

Figure 2 shows the X-ray diffraction (XRD) patterns of CsPbBr3-QD films that were deposited
onto glass substrates with different PbO/recycled PbO2 ratios. According to a study reports of
references [27–29], the primary difference between the cubic and orthorhombic crystal structure of
CsPbBr3 is a diffraction peak of ~30◦. It was illustrated that the two dominant diffraction peaks of the
synthesized pure CsPbBr3-QD (PbO(100%):PbO2(0%)) films, namely, (110) at 2θ = 15.193◦ and (220) at
2θ = 30.739◦, demonstrated the cubic perovskite crystal structure. In this work, the structure was similar
to those reported in Reference 24. In addition, the few waste lead CsPbBr3-QD (PbO(80%):PbO2(20%),
PbO(50%):PbO2(50%), and PbO(20%):PbO2(80%)) films showed weak peaks so that the quantum
dots had poor crystallinity and grain aggregation. On the other hand, the waste lead CsPbBr3-QD
(PbO(0%):PbO2(100%)) films displayed the three dominant peaks, which were (100) at 2θ = 15.179◦,
(110) at 2θ = 21.443◦, and (200) at 2θ = 30.674◦, respectively. It was observed that the (100) diffraction
peak intensity was very strong, indicating that CsPbBr3-QDs are high crystallinity along the (100)
orientation. The secondary diffraction peak of the (200) plane suggested crystalline perfection.
Meantime, the clear splitting of the (100) and (200) diffraction peaks further indicated that the
synthesized waste lead CsPbBr3-QD films may be of the room-temperature orthorhombic phase [30].

Figure 3 shows top and cross-sectional scanning electron microscopy (SEM) (GeminiSEM, ZEISS,
Oberkochen, Germany) images of CsPbBr3-QDs coated onto indium tin oxide (ITO) glass substrates.
It can be clearly seen that there are a large quantity of flakes on the surface of the ITO glass substrate,
and each grain size is around 200 nm. Each of them is constructed by the recovered lead perovskite
CsPbBr3-QD clusters. This means that the recycled lead perovskite CsPbBr3-QDs can effectively form
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a thin film. In Figure 3b, it can be seen that the interface is clear and flat. A continuous QD film was
formed by stacking CsPbBr3 flakes. The thickness of the recycled lead perovskite CsPbBr3-QDs layered
using QD-flake stacking is around 100 nm.Energies 2019, 12, x 4 of 10 
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Figure 3. (a) Top and (b) cross-sectional scanning electron microscopy (SEM) images of CsPbBr3-QDs
on ITO glass substrate.

Since the recycled lead perovskite CsPbBr3-QD particle size is very small, it must be clearly
examined using high-resolution transmission electron microscopy (HRTEM) to observe the lattice
structure of the quantum dots, as well as the quantum dot distribution and particle size. The sample
preparation must go through a drying step before examining the quantum dots owing to the inability
to observe the QD distribution in the colloidal solution. Therefore, the distribution image is observed
using HRTEM, obtained by immersing a copper mesh into the recovered lead perovskite CsPbBr3-QD
solution and then drying it by heating. Figure 4 displays the microstructural images observed by
TEM (JEM2100F, JEOL, Tokyo, Japan) for CsPbBr3-QD films with different PbO/recycled PbO2 ratios.
As shown in Figure 4a, it can be seen that the QD feature clearly presented a nearly cubic shape
and good monodispersion in the pure CsPbBr3-QD (PbO(100%):PbO2(0%)) film. However, as the
PbO2 content is increased, the QD feature clearly appears in these waste lead CsPbBr3-QD films,
as is shown in Figure 4b–e. The average CsPbBr3-QD particle size is evaluated at approximately
10–15 nm. Figure 4f exhibits the high-resolution TEM (HRTEM) image of the waste lead CsPbBr3-QD
(PbO(0%):PbO2(100%)) film. The grain with the clear lattice feature can be observed in this image,
indicating that it is crystalline. Based on our calculation, the d-spacing value of this lattice arrangement
is 2.91 Å, which is indexed to the (200) plane. Except for the HRTEM image, the selected area
electron diffraction (SAED) pattern also can be used to confirm the crystal phase. Figure 4g,h
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shows the SAED images of waste lead CsPbBr3-QD (PbO(50%):PbO2(50%) and PbO(0%):PbO2(100%))
films, respectively. In Figure 4g, the electron diffraction pattern is indistinct, revealing that the
CsPbBr3-QD (PbO(50%):PbO2(50%)) film is almost amorphous. On the other hand, the CsPbBr3-QD
(PbO(0%):PbO2(100%)) film possesses the clearer electron diffraction pattern. The diffraction rings
shown in Figure 4h are determined to be (100) and (200) planes. The TEM observations are in good
agreement with the XRD results.Energies 2019, 12, x 6 of 10 
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Figure 4. TEM images of CsPbBr3-QD films with (a) PbO(100%):PbO2(0%), (b) PbO(80%):PbO2(20%),
(c) PbO(50%):PbO2(50%), (d) PbO(20%):PbO2(80%), and (e) PbO(0%):PbO2(100%) ratios. (f) HRTEM
image of the CsPbBr3-QD (PbO(0%):PbO2(100%)) film. SAED images of CsPbBr3-QD films with
(g) PbO(50%):PbO2(50%) and (h) PbO(0%):PbO2(100%) ratios.
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To obtain the CsPbBr3-QDs’ optical properties, the PL spectra for these samples were studied using
a fluorescence spectrophotometer system (F-7000, Hitachi, Tokyo, Japan), as shown in Figure 5a. The PL
spectral intensity of CsPbBr3-QDs decreases as the PbO2 ratio of waste lead increases. Simultaneously,
the PL spectrum shift is usually as a result of the quantum size effect in the nano crystal [31,32].
The pure CsPbBr3-QDs (PbO(100%):PbO2(0%)) and waste lead CsPbBr3-QDs ((PbO(80%):PbO2(20%),
PbO(50%):PbO2(50%), PbO(20%):PbO2(80%), and PbO(0%):PbO2(100%)) displayed emission peak
positions centered at 488.2, 488.2, 489.6, 493.4, and 483.4 nm, with the narrow full width at half
maximum (FWHM) values of 41.48, 43.39, 43.76, 40.83, and 38.32 nm from the PL spectrum, respectively.
The photoluminescence quantum yield (PLQY) of all the colloidal CsPbBr3-QDs was estimated to
be 40%, as shown in Figure 5b. The PLQY of the CsPbBr3-QDs was lower than that of traditional
CsPbBr3-QDs, but the materials in this work were synthesized using used waste lead from discarded
lead–acid storage batteries. The perovskite CsPbBr3-QDs prepared using the recycled process in this
work save costs and also promote environmental recycling. Future work will involve purifying the
recycled lead perovskite CsPbBr3-QDs, increasing the concentration, and promoting PLQY.
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4. Conclusions

This study successfully used waste recovered lead oxide from storage batteries as the material to
make perovskite CsPbBr3-QDs with different ratios of PbO/recycled PbO2. From the TEM observations,
the QD feature clearly appears in these CsPbBr3-QD films. The average CsPbBr3-QD particle size was
confirmed using TEM to be approximately 10–15 nm. Based on XRD and TEM results, the CsPbBr3-QD
(PbO(0%):PbO2(100%)) film has the higher crystal quality. The CsPbBr3-QD quantum yield was 40%
as measured by PLQY. Compared with the price of pure lead or lead oxide as opposed to recycled
lead or lead oxide, the current lead recycling can achieve cost savings. However, waste lead recovered
from lead storage batteries will exhibit grain agglomeration in the production process. Therefore,
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it is necessary to optimize the concentration and grain size to improve the quantum yield through
a well-designed purification process. Moreover, when the PbO/PbO2 mixture is employed and the
PbO2 content increases, and because it is not easy to dissolve PbO2 in oleic acid, a small number of
PbO2 particles remain in the mixture, resulting in aggregation of the quantum dots. Therefore, the use
of acetic acid or sodium hydroxide as a solvent for PbO2 to improve quantum dot aggregation should
be considered in the future.
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